Design of Equipment for Manufacturing Helically-Coiled Tubes and its Automatic Control System

Author(s):  
Chang-Nian Chen ◽  
Ji-Tian Han ◽  
Li Shao ◽  
Tien-Chien Jen ◽  
Yi-Hsin Yen

A simple but accurate method for manufacturing helically-coiled tubes was proposed, and the manufacturing equipment and its automatic control system were designed. The main geometric parameters of helically-coiled tubes are determined exactly based on the theorem “three given points determine a circle” and the definition of the helix angle of helically-coiled tubes. The finished equipment primarily consists of the mechanical noumenon and the automatic control system. In this design, three die wheels A, B and C made of wearable steel are used to adjust the positions of the raw materials in order to determine the product geometric parameters expected in advance. Three servo motors working with precision linear sliding rheostat and PID closed-loop control functions drive the three wheels mentioned above in different directions. The parameter e determining the base circle diameter of coil diameter is obtained by adjusting the position of wheel C up and down, and the parameter e’ determining the helix angle is obtained by adjusting the relative distance between wheel B and wheel A in the helical axis direction. The whole manufacture process is automatically controlled by a piece of software compiled by Visual Basic, including the processes of baiting and cutting, installing wheels and calibration, motor controlling, bending tubes, and product inspection etc. The design parameters for manufacturing helically-coiled tubes using SUS304 stainless steel or other similar materials are tube diameters of 6–50 mm, coil diameters of 100–700 mm and helical pitches of 10–50 mm. A total of fourteen finished products were selected as random samples for inspection. The result showed that the average working velocity was about 0.6 m/min; the root mean square errors (RMSE) of coil diameter and helical pitch of finished products were 3.85 mm and 0.97 mm, respectively; and the maximum roundness error of tubes was only 0.09 mm.

2014 ◽  
Vol 509 ◽  
pp. 213-217
Author(s):  
Xing Zhong Li ◽  
Yu Long Lei ◽  
Shao Hua Sun

According to the automatic control system of pneumatic AMT clutch, this paper proposes a novel PID control based on logical switch of clutch engagement index. The PWM control is used to make a control for the solenoid valve. And a controller is established by this control algorithm. The automatic control system of pneumatic AMT clutches modeling using the AMEsim software, related simulation analysis and modifying the control parameters of the controller. It is conducted stand test according to the test scheme for the clutch automatic control system. And the test data is record and made an analysis on. The control algorithm is verified by stand test, greatly improving the bonding quality of the clutch.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1257
Author(s):  
Alexey Dorokhov ◽  
Alexander Aksenov ◽  
Alexey Sibirev ◽  
Nikolay Sazonov ◽  
Maxim Mosyakov ◽  
...  

The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.


2021 ◽  
Vol 1864 (1) ◽  
pp. 012039
Author(s):  
B. G. Ilyasov ◽  
G.A. Saitova ◽  
A.V. Elizarova

Sign in / Sign up

Export Citation Format

Share Document