Predictive Maintenance System for 2 Stroke Diesel Engines

Author(s):  
Francisco J. Jime´nez-Espadafor Aguilar ◽  
Jose´ A. Becerra Villanueva ◽  
Miguel Torres Garci´a ◽  
Elisa Carvajal Trujillo ◽  
Ricardo Chacartegui Rami´rez

Maintenance cost and unexpected failures can be drastically reduced in low speed diesel engines using vibro-acoustic condition monitoring. This methodology has presented as a reliable method for detection of manufacturing faults, running damages and other abnormalities in engine and its components. Continuous trending keeping deviations of monitored parameter allows also reduction of fuel consumption, optimize exhaust emissions, and increase components life time and increase safety. This paper describes a methodology for vibration monitoring and fault diagnosis based on time-windowing and frequency analysis. The effectiveness is demonstrated based on the results of two year operation on a large two stroke power plant diesel engine located in Mahon, Spain.

Author(s):  
Xiaotong Tu ◽  
Yue Hu ◽  
Fucai Li

Vibration monitoring is an effective method for mechanical fault diagnosis. Wind turbines usually operated under varying-speed condition. Time-frequency analysis (TFA) is a reliable technique to handle such kind of nonstationary signal. In this paper, a new scheme, called current-aided TFA, is proposed to diagnose the planetary gearbox. This new technique acquires necessary information required by TFA from a current signal. The current signal is firstly used to estimate the rotating speed of the shaft. These parameters are applied to the demodulation transform to obtain a rough time-frequency distribution (TFD). Finally, the synchrosqueezing method further enhances the concentration of the obtained TFD. The validation and application of the proposed method are presented by a simulated signal and a vibration signal captured from a test rig.


2006 ◽  
Vol 13 (4-5) ◽  
pp. 409-427 ◽  
Author(s):  
Hans Günther Poll ◽  
José Carlos Zanutto ◽  
Walter Ponge-Ferreira

A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some typical recommendations based on the experience obtained on previous diagnostic reports of Francis turbines are performed in order to allow a better and safe operation of these power plant units.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiajie Jiang ◽  
Hui Li ◽  
Zhiwei Mao ◽  
Fengchun Liu ◽  
Jinjie Zhang ◽  
...  

AbstractCondition monitoring and fault diagnosis of diesel engines are of great significance for safety production and maintenance cost control. The digital twin method based on data-driven and physical model fusion has attracted more and more attention. However, the existing methods lack deeper integration and optimization facing complex physical systems. Most of the algorithms based on deep learning transform the data into the substitution of the physical model. The lack of interpretability of the deep learning diagnosis model limits its practical application. The attention mechanism is gradually developed to access interpretability. In this study, a digital twin auxiliary approach based on adaptive sparse attention network for diesel engine fault diagnosis is proposed with considering its signal characteristics of strong angle domain correlation and transient non-stationary, in which a new soft threshold filter is designed to draw more attention to multi decentralized local fault information dynamically in real time. Based on this attention mechanism, the distribution of fault information in the original signal can be better visualized to help explain the fault mechanism. The valve failure experiment on a diesel engine test rig is conducted, of which the results show that the proposed adaptive sparse attention mechanism model has better training efficiency and clearer interpretability on the premise of maintaining performance.


Author(s):  
P Zhou ◽  
H Li ◽  
D Clelland

This article introduces a novel pattern recognition and fault diagnosis method for diesel engines. The method is developed from engine vibration signal analysis in combination with wavelet and Kullback-Leibler distance (KLD) approaches. The new approach is termed wavelet Kullback-Leibler distance (WKLD). Experimental data relating to piston and cylinder liner wear obtained from a production diesel engine are used to evaluate the newly developed method. A good agreement between the experimental data and the WKLD estimation is found. The results of this article suggest that WKLD is an advancement on the methods which have been currently developed for pattern recognition and fault diagnosis of diesel engines.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 259
Author(s):  
Qilan Ran ◽  
Yedong Song ◽  
Wenli Du ◽  
Wei Du ◽  
Xin Peng

In order to reduce pollutants of the emission from diesel vehicles, complex after-treatment technologies have been proposed, which make the fault detection of diesel engines become increasingly difficult. Thus, this paper proposes a canonical correlation analysis detection method based on fault-relevant variables selected by an elitist genetic algorithm to realize high-dimensional data-driven faults detection of diesel engines. The method proposed establishes a fault detection model by the actual operation data to overcome the limitations of the traditional methods, merely based on benchmark. Moreover, the canonical correlation analysis is used to extract the strong correlation between variables, which constructs the residual vector to realize the fault detection of the diesel engine air and after-treatment system. In particular, the elitist genetic algorithm is used to optimize the fault-relevant variables to reduce detection redundancy, eliminate additional noise interference, and improve the detection rate of the specific fault. The experiments are carried out by implementing the practical state data of a diesel engine, which show the feasibility and efficiency of the proposed approach.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1161
Author(s):  
Kuo-Hao Fanchiang ◽  
Yen-Chih Huang ◽  
Cheng-Chien Kuo

The safety of electric power networks depends on the health of the transformer. However, once a variety of transformer failure occurs, it will not only reduce the reliability of the power system but also cause major accidents and huge economic losses. Until now, many diagnosis methods have been proposed to monitor the operation of the transformer. Most of these methods cannot be detected and diagnosed online and are prone to noise interference and high maintenance cost that will cause obstacles to the real-time monitoring system of the transformer. This paper presents a full-time online fault monitoring system for cast-resin transformer and proposes an overheating fault diagnosis method based on infrared thermography (IRT) images. First, the normal and fault IRT images of the cast-resin transformer are collected by the proposed thermal camera monitoring system. Next is the model training for the Wasserstein Autoencoder Reconstruction (WAR) model and the Differential Image Classification (DIC) model. The differential image can be acquired by the calculation of pixel-wise absolute difference between real images and regenerated images. Finally, in the test phase, the well-trained WAR and DIC models are connected in series to form a module for fault diagnosis. Compared with the existing deep learning algorithms, the experimental results demonstrate the great advantages of the proposed model, which can obtain the comprehensive performance with lightweight, small storage size, rapid inference time and adequate diagnostic accuracy.


Sign in / Sign up

Export Citation Format

Share Document