Fluorescence Microscopy for the Measurement of the Surface Properties of the Gas Diffusion Layers of Fuel

Author(s):  
Brooks Friess ◽  
Mina Hoorfar

One of the major problems of current proton exchange membrane (PEM) fuel cells is water management. The gas diffusion layer (GDL) of the fuel cell plays an important role in water management since humidification and water removal are both achieved through the GDL. Various numerical models developed to illustrate the multiphase flow and transport in the fuel cell require the accurate measurement of the GDL properties (wettability and surface energy). In a recent study, the capillary penetration technique has been used to measure indirectly the wettability of the GDL based on the experimental height penetration of the sample liquid into the porous sample. In essence, a high resolution microscope/camera was used to detect the rate of penetrated height into the sample GDL. The shortcoming of this type of visualization is that it can only be used for thin hydrophilic GDL samples with zero Teflon loadings. For the thick and high Teflon loading GDLs, there is not enough contrast to detect the height of the penetrated liquid. In the real fuel cells, the GDLs are made of the micro-porous and macro-porous layers with an optimum Teflon loading. Therefore, it is required to develop a new experimental methodology capable of detecting the rate of penetration and as a result the wettability of GDLs samples used in fuel cells. In this paper, the fluorescence microscopy technique is integrated into the experimental setup of the capillary penetration method to improve the contrast between the wetted and non-wetted area. The fluorescence setup uses a powder die, dissolved in the test fluid, which is excited by a concentrated ultraviolet light illuminated in the vertical manner. To acquire the profile images of the penetrated liquid, an optical mirror was used. This new setup has the added advantage of providing a visual representation of the different regimes of penetration (e.g., the fingering effect reported for the pathways of the liquid penetrated into the GDLs) that are defined by the capillary number and mobility ratio of each fluid. Since the GDL samples used in this study are relatively hydrophobic (e.g., with 40% Teflon loadings), the pattern of liquid penetration is not uniform. Thus, an image analysis program was developed to determine the average height of penetration based on the area under the entire wetted area. The general Washburn equation was then used to fit the extracted height data and provide the average internal contact angle for each test liquid.

Author(s):  
B. R. Friess ◽  
M. Hoorfar

One of the major problems of current proton exchange membrane (PEM) fuel cells is water management. The gas diffusion layer (GDL) of the fuel cell plays an important role in water management since humidification and water removal are both achieved through the GDL. Various numerical models were developed to illustrate the multiphase flow and transport in the fuel cell. The accuracy of these models depends on the accurate measurement of the GDL properties such as wettability, surface energy, and porosity. Most of the studies conducted for measuring the wettability of the GDL are based on the external contact angle measurements. However, the external contact angle does not describe adequately the capillary forces acting on the water inside the GDL pores. In a recent study, the capillary penetration technique has been used to measure indirectly the wettability of the GDL based on the experimental height increase due to penetration of the liquid into the porous sample. In essence, the height penetration technique was used along with the general Washburn equation to determine the surface properties of GDLs [Friess and Hoorfar, 2010, “Measurement of Internal Wettability of Gas Diffusion Porous Media of PEM Fuel Cells,” J. Power Sources, 195, pp. 4736–4742]. The shortcoming of this method is that it is only effective for thin GDL samples with low poly(tetrafluoroethylene) (PTFE) loading since the digital images acquired to find the height of penetration has a limited contrast between the penetrated and unpenetrated areas. Since fuel cells need to use different combinations of PTFE loading and thickness depending on the desired use of the cell, it is important to find a way to measure the contact angle of the GDLs with different PTFE loadings and thicknesses. This paper presents a novel fluorescence microscopy method that drastically improves the contrast in the images and allows for the accurate measurement of the height of penetration of the test liquid at each time step. This penetrated height values are then used along with an optimization method (which finds the best fit between the general Washburn equation and the experimental data) to calculate the contact angle of the test liquid on the GDL sample.


Author(s):  
Luis Breziner ◽  
Peter Strahs ◽  
Parsaoran Hutapea

The objective of this research is to analyze the effects of vibration on the performance of hydrogen PEM fuel cells. It has been reported that if the liquid water transport across the gas diffusion layer (GDL) changes, so does the overall cell performance. Since many fuel cells operate under a vibrating environment –as in the case of automotive applications, this may influence the liquid water concentration across the GDL at different current densities, affecting the overall fuel cell performance. The problem was developed in two main steps. First, the basis for an analytical model was established using current models for water transport in porous media. Then, a series of experiments were carried, monitoring the performance of the fuel cell for different parameters of oscillation. For sinusoidal vibration at 10, 20 and 50Hz (2 g of magnitude), a decrease in the fuel cell performance by 2.2%, 1.1% and 1.3% was recorded when compared to operation at no vibration respectively. For 5 g of magnitude, the fuel cell reported a drop of 5.8% at 50 Hz, whereas at 20 Hz the performance increased by 1.3%. Although more extensive experimentation is needed to identify a relationship between magnitude and frequency of vibration affecting the performance of the fuel cell as well as a throughout examination of the liquid water formation in the cathode, this study shows that sinusoidal vibration, overall, affects the performance of PEM fuel cells.


Author(s):  
Daniel F. Walczyk ◽  
Jaskaran S. Sangra

The feasibility of an alternative fuel cell architecture, called a ribbon membrane electrode assembly (MEA), is demonstrated for low-temperature polymer electrolyte membrane (PEM) fuel cells used in portable power applications by comparing it to a traditional bipolar “stack” architecture. A ribbon MEA consists of adjacent PEM cells sharing a common gas diffusion layer to allow for lateral electrical current flow and an integral gas-tight, conductive interconnect/seal, where adjacent cells meet to prevent reactant gas leakage. The resulting lateral arrangement of MEAs can be used to supply all MEAs simultaneously instead of individual bipolar plates with flow fields for a stack. A pair of two-cell ribbon MEAs, with and without an interconnect/seal, were designed, prototyped, and sealed by thermal pressing. The MEAs were clamped in a two-piece box fixture to provide reactant gases on the anode and cathode sides, hooked to a fuel cell (FC) test stand and yielded an open circuit voltage (OCV) of 1.43 V with an interconnect/seal and 0.6 V without. A two-cell bipolar stack PEMFC with identical MEA specifications had an OCV of 1.86 V. Polarization curves for the ribbon MEA with interconnect/seal showed the sensitivity of performance to clamping pressure and positioning of the copper current collectors. The ribbon MEA polarization curve was also shifted downward by 0.42 V as compared with that of the traditional stack, and suspected causes (e.g., gas leaking) are attributable to the nonoptimal test fixture design. Hence, the ribbon MEA architecture is shown to be feasible. Future work suggested includes improvements to the test fixture design, development of automated manufacturing capabilities for high volume production, and demonstration of a multicell (>2) ribbon MEA PEMFC design.


Author(s):  
Cody D. Rath ◽  
Satish G. Kandlikar

Water management issues continue to be a major concern for the performance of polymer electrolyte membrane (PEM) fuel cells. Maintaining the optimal amount of hydration can ensure that the cell is operating properly and with high efficiency. There are several components that can affect water management, however one area that has received increased attention is the interface between the gas diffusion layer (GDL) and the gas reactant channels where excess water has a tendency to build up and block reactant gasses. One key parameter that can affect this build up is the geometry of the microchannels. The work presented here proposes an optimal trapezoidal geometry which will aid in the removal of excess water in the gas channels. The Concus-Finn condition is applied to the channel surfaces and GDL to ensure the water will be drawn away from GDL surface and wicked to the top corner of the channel. An ex situ setup is designed to establish the validity of the Concus-Finn application. Once validated, this condition is then used to design optimal channel geometries for water removal in a PEM fuel cell gas channel.


Author(s):  
Nazmul Islam

Proton exchange membrane (PEM) fuel cells are among the most promising fuel cell technologies. Recent experimental and numerical investigations [1–3] on PEM fuel cells (PEMFC) identified water management as one of the most critical issues for designing robust, high-performance PEM fuel cells. Proper water management within the cell is therefore essential, as dehydration of the membrane or flooding of the cathode result in increasing resistive losses. Flooding reduction in the fuel cell is commonly done by removing water with excessive reactant (H2 or O2) flow rates and elevated gas pressures. This mixture makes air delivery the largest parasitic load on fuel cells. Typically, this type of air delivery consumes more than 20% of the fuel cell power. As an alternative, we have developed a novel biased AC electroosmtic micropump for PEM fuel cell applications that can be fabricated with micro-electro-mechanical-systems (MEMS) compatible semiconductor micro-fabrication. This research paper will experimentally demonstrate the bi-directional pumping action that can prevent flooding, increase power density, and ensure stable performance of fuel cell by removing water from flooded regions and redistributing it to under-saturated regions.


2013 ◽  
Vol 3 (2) ◽  
pp. F7-F9 ◽  
Author(s):  
T. Arlt ◽  
M. Klages ◽  
M. Messserschmidt ◽  
H. Riesemeier ◽  
J. Scholta ◽  
...  

2019 ◽  
Vol 26 (08) ◽  
pp. 1950038
Author(s):  
M. S. VLASKIN ◽  
A. V. GRIGORENKO ◽  
E. I. SHKOLNIKOV ◽  
A. S. ILYUKHIN

Three different types of current-collecting plates for air-hydrogen PEM fuel cell were manufactured and tested: unmodified titanium plates; gold-plated titanium plates and titanium plates treated by carbon ions implantation. It was shown that the applied surface modifications reduce contact resistance between titanium plate and carbon gas diffusion layer. Total ohmic resistance of fuel cell is reduced by 1.8 and 1.4 times in case of gold-plated titanium and carbon-implanted titanium, respectively, in comparison with uncoated titanium. Although gold plating turned out to be more profitable than carbon ion implantation in terms of electrical characteristics, in the last case, the performance enhancement was reached without using precious metals, which at mass production must play more important role. This technology promises to reduce the cost of bipolar plates manufacturing, while maintaining high electrical performance of PEM fuel cells.


2020 ◽  
Vol 44 (5) ◽  
pp. 1227-1243
Author(s):  
Hande UNGAN ◽  
Ayşe BAYRAKÇEKEN YURTCAN

Water management is one of the obstacles in the development and commercialization of proton exchange membrane fuel cells (PEMFCs). Sufficient humidification of the membrane directly affects the PEM fuel cell performance. Therefore, 2 different hydrophobic polymers, polydimethylsiloxane (PDMS) and (3-Aminopropyl) triethoxysilane (APTES), were tested at different percentages (5, 10, and 20 wt.%) in the catalyst layer. The solution was loaded onto the surface of a 25 BC gas diffusion layer (GDL) via the spraying method. The performance of the obtained fuel cells was compared with the performance of the commercial catalyst. Characterizations of each surface, including different amounts of PDMS and APTES, were performed via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analyses. Molecular bond characterization was examined via Fourier transform infrared spectroscopy (FTIR) analysis and surface hydrophobicity was measured via contact angle measurements. The performance of the fuel cells was evaluated at the PEM fuel cell test station and the 2 hydrophobic polymers were compared. Surfaces containing APTES were found to be more hydrophobic. Fuel cells with PDMS performed better when compared to those with APTES. Fuel cells with 5wt.% APTES with a current density of 321.31 mA/cm2and power density of 0.191 W/cm2, and 10wt.% PDMS with a current density of 344.52 mA/cm2and power density of 0.205 W/cm2 were the best performing fuel cells at 0.6V.


Sign in / Sign up

Export Citation Format

Share Document