scholarly journals Microfluidic Study of Drainage and Imbibition in Porous Media: Definition of Amott Indices

Author(s):  
Emilie Dressaire ◽  
Howard A. Stone

The wettability of reservoir rocks plays a critical role in oil recovery operations. This property is traditionally defined in terms of the contact angle between the fluid-fluid interface and the solid surface. In natural porous media, it has been preferred to characterize the wettability and its effects on fluid flow behavior in terms of Amott indices, through the capillary pressure-fluid saturation relationship. This “bulk” definition is based on the steady states reached by the two phases, the wetting one and the non-wetting one, upon drainage (removal of the wetting fluid) and imbibition (removal of the non-wetting fluid). These indices provide some indirect indication of the rock surface chemistry and porosity structure. Previous studies on Amott indices have mostly focused on numerical modeling of rocks. In this paper, we present an experimental study on two phase flow in regular lattices of glass microchannels. A wet etching technique is used to fabricate 2D networks composed of hundreds of repeat units. The repeat units are square, hexagonal, or triangular, with a lattice parameter of about 100 micrometers. Controlling and varying the microchannel wettability, network geometry, and fluid properties allow correlating the physical chemistry of the system and the characteristics of the multiphase flow. We perform drainage-imbibition cycles by controlling the pressure difference across the device. For each pressure difference, we record and characterize the distribution of the two phases at equilibrium. Our results capture the dependance of the Amott index on both fluid and network properties. The values obtained are consistent with previous studies on wetting phenomena at the pore level. The drainage-imbibition cycles also provide information on the patterns of invasion. We show that the study of the cycles can further predictability of Amott indices.

1981 ◽  
Vol 21 (01) ◽  
pp. 51-62 ◽  
Author(s):  
Friedrich G. Helfferich

Abstract The basis of a general theory of multicomponent, multiphase displacement in porous media is presented. The theory is applicable to an arbitrary number of phases, an arbitrary number of components partitioning between the phases, and variable initial and injection conditions. Only the effects of propagation are considered; phase equilibria and dependence of fractional flows on phase compositions and saturations are required as input, but any type of equilibrium and flow behavior can be accommodated. The principal simplifying assumptions are the restriction to one dimension, local phase equilibria, volume additivity on partitioning, idealized fluid dynamic behavior, and absence of temperature and pressure effects. The theory is an extension of that of multicomponent chromatography and has taken from it the concept of "coherence" and, for practical application, the tools of composition routes and distance/time diagrams. The application of the theory to a surfactant flood is illustrated in a companion paper.1 Introduction A key problem in modern methods of enhanced oil recovery is that of multicomponent, multiphase displacement in porous media. This term means the induced flow of any number of simultaneous, not fully miscible fluid phases consisting of any number of components. The components may partition between the phases; moreover, the physical properties of the phases (densities, viscosities, interfacial tensions, etc.) depend on composition and, therefore, on partitioning of the components. Multicomponent, multiphase displacement may be viewed as a generalization and combination of two different and independent approaches. The first of these is the highly developed theory of multicomponent chromatrography,2 which allows for any number of components affecting one canother's distribution behavior but admits only one mobile and one stationary phase. This theory has to be extended to more than one mobile phase. The second is the fluid dynamic theory of immiscible displacement in porous media, allowing for more than one mobile phase but not for partitioning of components. This theory was developed in the 1940's for two mobile phases3 and so far has not been stated in general form for more than two phases. It has to be extended to include partitioning of the components between the phases and its effects on phase properties. A summary of the start of the art, including recent work on systems with up to three components and two phases, has been given by Pope.4 This paper describes the extension of the theory to multicomponent, multiphase displacement with partitioning and for arbitrary initial and boundary conditions. The theory concerns itself only with transport behavior. Phase equilibrium and flow properties of the phases (relative permeabilities) as a function of composition are considered as given. Application of the theory, therefore, requires as input either empirical correlations of experimental data on phase equilibria and properties or theories predicting these. Morever, the theory concentrates exclusively on multicomponent, multiphase effects and does not attempt to account for the complex fluid dynamic situation in real, three-dimensional, and nonuniform reservoirs.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1225 ◽  
Author(s):  
Xiankang Xin ◽  
Gaoming Yu ◽  
Zhangxin Chen ◽  
Keliu Wu ◽  
Xiaohu Dong ◽  
...  

The flow of polymer solution and heavy oil in porous media is critical for polymer flooding in heavy oil reservoirs because it significantly determines the polymer enhanced oil recovery (EOR) and polymer flooding efficiency in heavy oil reservoirs. In this paper, physical experiments and numerical simulations were both applied to investigate the flow of partially hydrolyzed polyacrylamide (HPAM) solution and heavy oil, and their effects on polymer flooding in heavy oil reservoirs. First, physical experiments determined the rheology of the polymer solution and heavy oil and their flow in porous media. Then, a new mathematical model was proposed, and an in-house three-dimensional (3D) two-phase polymer flooding simulator was designed considering the non-Newtonian flow. The designed simulator was validated by comparing its results with those obtained from commercial software and typical polymer flooding experiments. The developed simulator was further applied to investigate the non-Newtonian flow in polymer flooding. The experimental results demonstrated that the flow behavior index of the polymer solution is 0.3655, showing a shear thinning; and heavy oil is a type of Bingham fluid that overcomes a threshold pressure gradient (TPG) to flow in porous media. Furthermore, the validation of the designed simulator was confirmed to possess high accuracy and reliability. According to its simulation results, the decreases of 1.66% and 2.49% in oil recovery are caused by the difference between 0.18 and 1 in the polymer solution flow behavior indexes of the pure polymer flooding (PPF) and typical polymer flooding (TPF), respectively. Moreover, for heavy oil, considering a TPG of 20 times greater than its original value, the oil recoveries of PPF and TPF are reduced by 0.01% and 5.77%, respectively. Furthermore, the combined effect of shear thinning and a threshold pressure gradient results in a greater decrease in oil recovery, with 1.74% and 8.35% for PPF and TPF, respectively. Thus, the non-Newtonian flow has a hugely adverse impact on the performance of polymer flooding in heavy oil reservoirs.


2020 ◽  
Vol 21 (2) ◽  
pp. 339
Author(s):  
I. Carneiro ◽  
M. Borges ◽  
S. Malta

In this work,we present three-dimensional numerical simulations of water-oil flow in porous media in order to analyze the influence of the heterogeneities in the porosity and permeability fields and, mainly, their relationships upon the phenomenon known in the literature as viscous fingering. For this, typical scenarios of heterogeneous reservoirs submitted to water injection (secondary recovery method) are considered. The results show that the porosity heterogeneities have a markable influence in the flow behavior when the permeability is closely related with porosity, for example, by the Kozeny-Carman (KC) relation.This kind of positive relation leads to a larger oil recovery, as the areas of high permeability(higher flow velocities) are associated with areas of high porosity (higher volume of pores), causing a delay in the breakthrough time. On the other hand, when both fields (porosity and permeability) are heterogeneous but independent of each other the influence of the porosity heterogeneities is smaller and may be negligible.


Author(s):  
Shabina Ashraf ◽  
Jyoti Phirani

Abstract Capillary impregnation of viscous fluids in porous media is useful in diagnostics, design of lab-on-chip devices and enhanced oil recovery. The impregnation of a wetting fluid in a homogeneous porous medium follows Washburn’s diffusive law. The diffusive dynamics predicts that, with the increase in permeability, the rate of spontaneous imbibition of a wetting fluid also increases. As most of the naturally occurring porous media are composed of hydrodynamically interacting layers having different properties, the impregnation in a heterogeneous porous medium is significantly different from a homogeneous porous medium. A Washburn like model has been developed in the past to predict the imbibition behavior in the layers for a hydrodynamically interacting three layered porous medium filled with a non-viscous resident phase. It was observed that the relative placement of the layers impacts the imbibition phenomena significantly. In this work, we develop a quasi one-dimensional lubrication approximation to predict the imbibition dynamics in a hydrodynamically interacting multi-layered porous medium. The generalized model shows that the arrangement of layers strongly affects the saturation of wetting phase in the porous medium, which is crucial for oil recovery and in microfluidic applications.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1092-1107 ◽  
Author(s):  
M.. Tagavifar ◽  
M.. Balhoff ◽  
K.. Mohanty ◽  
G. A. Pope

Summary Surfactants induce spontaneous imbibition of water into oil-wet porous media by wettability alteration and interfacial-tension (IFT) reduction. Although the dependence of imbibition on wettability alteration is well-understood, the role of IFT is not as clear. This is partly because, at low IFT values, most water/oil/amphiphile(s) mixtures form emulsions and/or microemulsions, suggesting that the imbibition is accompanied by a phase change, which has been neglected or incorrectly accounted for in previous studies. In this paper, spontaneous displacement of oil from oil-wet porous media by microemulsion-forming surfactants is investigated through simulations and the results are compared with existing experimental data for low-permeability cores with different aspect ratios and permeabilities. Microemulsion viscosity and oil contact angles, with and without surfactant, were measured to better initialize and constrain the simulation model. Results show that with such processes, the imbibition rate and the oil recovery scale differently with core dimensions. Specifically, the rate of imbibition is faster in cores with larger diameter and height, but the recovery factor is smaller when the core aspect ratio deviates considerably from unity. With regard to the mechanism of water uptake, our results suggest, for the first time, that (i) microemulsion formation (i.e., fluid/fluid interface phenomenon) is fast and favored over the wettability alteration (i.e., rock-surface phenomenon) in short times; (ii) a complete wettability transition from an oil-wet to a mixed microemulsion-wet and surfactant-wet state always occurs at ultralow IFT; (iii) wettability alteration causes a more uniform imbibition profile along the core but creates a more diffused imbibition front; and (iv) total emulsification is a strong assumption and fails to describe the dynamics and the scaling of imbibition. Wettability alteration affects the imbibition dynamics locally by changing the composition path, and at a distance by changing the flow behavior. Simulations predict that even though water is not initially present, it forms inside the core. The implications of these results for optimizing the design of low-IFT imbibition are discussed.


1961 ◽  
Vol 1 (02) ◽  
pp. 61-70 ◽  
Author(s):  
J. Naar ◽  
J.H. Henderson

Introduction The displacement of a wetting fluid from a porous medium by a non-wetting fluid (drainage) is now reasonably well understood. A complete explanation has yet to be found for the analogous case of a wetting fluid being spontaneously imbibed and the non-wetting phase displaced (imbibition). During the displacement of oil or gas by water in a water-wet sand, the porous medium ordinarily imbibes water. The amount of oil recovered, the cost of recovery and the production history seem then to be controlled mainly by pore geometry. The influence of pore geometry is reflected in drainage and imbibition capillary-pressure curves and relative permeability curves. Relative permeability curves for a particular consolidated sand show that at any given saturation the permeability to oil during imbibition is smaller than during drainage. Low imbibition permeabilities suggest that the non-wetting phase, oil or gas, is gradually trapped by the advancing water. This paper describes a mathematical image (model) of consolidated porous rock based on the concept of the trapping of the non-wetting phase during the imbibition process. The following items have been derived from the model.A direct relation between the relative permeability characteristics during imbibition and those observed during drainage.A theoretical limit for the fractional amount of oil or gas recoverable by imbibition.An expression for the resistivity index which can be used in connection with the formula for wetting-phase relative permeability to check the consistency of the model.The limits of flow performance for a given rock dictated by complete wetting by either oil or water.The factors controlling oil recovery by imbibition in the presence of free gas. The complexity of a porous medium is such that drastic simplifications must be introduced to obtain a model amenable to mathematical treatment. Many parameters have been introduced by others in "progressing" from the parallel-capillary model to the randomly interconnected capillary models independently proposed by Wyllie and Gardner and Marshall. To these a further complication must be added since an imbibition model must trap part of the non-wetting phase during imbibition of the wetting phase. Like so many of the previously introduced complications, this fluid-block was introduced to make the model performance fit the observed imbibition flow behavior.


Sign in / Sign up

Export Citation Format

Share Document