Analytical Modeling and Experimental Measurements of Ternary Molten Salt Heat Transfer Fluids for Energy Applications

Author(s):  
Kevin Coscia ◽  
Sudhakar Neti ◽  
Alparslan Oztekin ◽  
Tucker Elliot ◽  
Satish Mohapatra

One of the major impediments of current energy applications is the availability of an economical and reliable heat transfer fluid. Such applications include concentrated solar power, gas processing, petrochemicals, nuclear, and other high-temperature processes. Organic heat transfer fluids currently in use have limitations approaching 390°C, and other salt-based fluids have rather high freezing temperatures. Ternary nitrate salts have the potential to operate at high temperatures while maintaining low freezing temperatures. Some melting temperatures of LiNO3-NaNO3-KNO3 salt mixtures as a function of LiNO3 composition have been investigated using differential scanning calorimetry. Phase diagrams have also been predicted for the LiNO3-NaNO3-KNO3, CsNO3-NaNO3-KNO3, and CsNO3-LiNO3-KNO3 systems using mathematical modeling and the results are encouraging. The results presented in this work are expected to make a significant impact on the development of economical and practical ternary nitrate mixtures in energy applications.

2021 ◽  
Vol 02 (01) ◽  
Author(s):  
A.G.N. Sofiah ◽  
◽  
M. Samykano ◽  
S. Shahabuddin ◽  
K. Kadirgama ◽  
...  

Since a decade ago, investigation on nanofluids has grown significantly owing to its enhanced thermal properties compared to conventional heat transfer fluids. This engineered nanofluid has been widely used in the thermal engineering system to improve their energy consumption by improving the thermal efficiency of the system. The addition of nano-size particles as additives dispersed in the base fluids proved to significantly either improve or diminish the behaviour of the base fluids. The behaviour of the base fluid highly depends on the properties of the additives material, such as morphology, size, and volume fraction. Among the variety of nanoparticles studied, the conducting polymers have been subject of high interest due to its high environmental stability, good electrical conductivity, antimicrobial, anti-corrosion property and significantly cheap compared to other nanoparticles. As such, the main objective of the present review is to provide an overview of the work performed on thermal properties performance of conducting polymers based nanofluids.


2021 ◽  
Vol 321 ◽  
pp. 02016
Author(s):  
Belkacem Bouali ◽  
Hanane-Maria Regue

This paper presents an analysis of the performance of a parabolic trough collector (PTC) according to some key operating parameters. The effects of the secondary reflector, the length and thickness of the absorber tube (receiver tube) and the flow rate of the heat transfer fluid (HTF) are investigated. The main objective is to determine an optimal operation, which improves the performance of a traditional PTC. The target variables are the temperature at the outlet of the tube, the amount of energy collected by the HTF and the efficiency of the system. The solar flux data concern the city of LAGHOUAT located in the south of Algeria. Four days in different seasons are considered. The optical analysis of the system is performed by using the open source SolTrace code. The output of this analysis is used as a boundary condition for the CFD solver. The conjugate heat transfer and the fluid flow through the absorber tube are simulated by using ANSYS-CFX solver. Water is considered as heat transfer fluids. The obtained results show that the use of a curved secondary reflector significantly improves the performance of the traditional PTC. As the thickness of the tube increases, the heat storage in the material increases, which increases the temperature at the exit of the tube and therefore the efficiency of the system. However, the length of the tube depends on the mass flow of the HTF and vice versa. To keep the efficiency constant by choosing another length, it is necessary to choose a mass flow rate proportional to the flow rate corresponding to the initial length.


2010 ◽  
Vol 45 (12-13) ◽  
pp. 1908-1920 ◽  
Author(s):  
J. McFarlane ◽  
H. Luo ◽  
M. Garland ◽  
W. V. Steele

1979 ◽  
Vol 51 (3) ◽  
pp. 529-535 ◽  
Author(s):  
C.R. Clark ◽  
T.C. Marshall ◽  
B.S. Merickel ◽  
A. Sanchez ◽  
D.G. Brownstein ◽  
...  

2013 ◽  
Vol 757 ◽  
pp. 139-149 ◽  
Author(s):  
Hema Setia ◽  
Ritu Gupta ◽  
R.K. Wanchoo

It has long been established that a suspension of nanosized solid particles in liquids provide useful advantages in industrial heat transfer fluid systems. Numerous investigations on nanofluids show a significant enhancement in thermal conductivity over the base fluid in which these nanoparticles are dispersed. However, the stability of the suspension is critical in the development and application of these new kind of heat transfer fluids. Rather, high discrepancy in the published data for the same nanoparticles on the physical and thermal characteristics of nanofluids is primarily due to different methods adopted by different researchers to obtain stable nanofluids. Sedimentation and agglomeration of nanoparticles in nanofluids and their dispersion stability has not been well addressed in the literature. Hence, there is a need to establish a standard method of preparation of these nanofluids so as to obtain a unified data which can eventually be utilized for the application of nanofluids. This chapter focuses on the stability of nanofluids prepared via two step process. Different parameters that affect the stability of nanofluids have been discussed. Different techniques that have been used for the evaluation of the stability characteristics of nanofluids have been elucidated.


Author(s):  
Roy Strandberg ◽  
Debendra K. Das

The performance of hydronic heating coils with nanoparticle enhanced heat transfer fluids (nanofluids) is evaluated and compared with their performance with a conventional heat transfer fluid comprised of 60% ethylene glycol (EG) and 40% water, by mass (60% EG). The nanofluids analyzed are comprised of either CuO or Al2O3 nanoparticles dispersed in the 60% EG solution. The heating coil has a finned tube configuration commonly used in commercial air handling and ventilating systems. Coil performance is modeled using methods that have been previously developed and validated. The methods are modified by incorporating Nusselt number correlations for nanofluids that have been previously documented in the literature. Similarly, correlations for nanoparticle thermophysical properties that have been documented in the literature are employed. The analyses show that heating coil performance may be enhanced considerably by employing these nanofluid solutions as a heat transfer medium. The model predicts a 16.6% increase in coil heating capacity under certain conditions with the 4% Al2O3/60% EG nanofluid, and a 7.4% increase with the 2% CuO/60% EG nanofluid compared with heating capacity with the base fluid. The model predicts that, for a coil with the Al2O3/60% EG nanofluid, liquid pumping power at a given heating output is reduced when compared with a coil with the base fluid.


Author(s):  
Nicolas Calvet ◽  
Antoine Meffre ◽  
Judith C. Gomez ◽  
Abdessamad Faik ◽  
Régis Olivès ◽  
...  

This paper investigates the possibility of using a post-industrial ceramic commercially called Cofalit as a promising, sustainable, and inexpensive ($10/ton) thermal energy storage material. This ceramic presents relevant properties to store thermal energy by means of sensible heat in the temperature range of concentrated solar power (CSP) plants from ambient temperature up to 1100 °C. In the present study, the compatibility of this ceramic was studied with two conventional heat transfer fluids: nitrate molten salts for medium-temperature applications (200 to 500 °C) and air for high-temperature applications (500 to 900 °C). The use of this ceramic in direct contact with the heat transfer fluid should significantly reduce the cost of thermal energy storage systems in CSP applications and help to achieve the U.S. Department of Energy’s SunShot Initiative cost targets.


Sign in / Sign up

Export Citation Format

Share Document