Design of a Microfluidic Device to Induce Noise Damage in Hair Cells of the Zebrafish Lateral Line

Author(s):  
Hyuck-Jin Kwon ◽  
Yuhao Xu ◽  
Stephen A. Solovitz ◽  
Wei Xue ◽  
Alexander G. Dimitrov ◽  
...  

Hearing loss affects millions of people worldwide and often results from death of the sensory hair cells in the inner ear. Noise-induced damage is one of the leading causes of hair cell loss. Recently, the zebrafish lateral line system has emerged as a powerful in vivo model for real-time studies of hair cell damage and protection. In this research, we designed a microfluidic device to induce noise damage in hair cells of the zebrafish lateral line. As the first step, a 3-D computational fluid dynamics (CFD) simulation was utilized to predict the flow pattern inside the device. An ideal flow pattern for our application should feature higher velocity at the side and lower velocity in the middle of a channel. Flow induced from ordinary channel geometry with single inlet/outlet pair would not work for us because the boundary layers from the two side walls will grow and merge with each other and induce the maximum flow speed in the middle of the channel. In order to achieve the desired flow pattern, side-wall inlet/outlet pairs were used to suppress the growth of boundary layers. CFD simulation was used to design important parameters such as dimensions of the microfluidic channel and the angle of inlets and outlets. It was found that flow velocity at the side of the channel could be 6.7 times faster than the velocity in the middle when we array the inlets and outlets alternatively and set the angle of the inlet to 45° with 2.0 mm main channel width. This 3-D CFD model will serve as a convenient model to design a microfluidic device to induce noise damage in hair cells of a zebrafish lateral line by manipulating the flow pattern inside the device.

2018 ◽  
Vol 58 (2) ◽  
pp. 329-340 ◽  
Author(s):  
Clare V H Baker ◽  
Melinda S Modrell

Abstract The vertebrate lateral line system comprises a mechanosensory division, with neuromasts containing hair cells that detect local water movement (“distant touch”); and an electrosensory division, with electrosensory organs that detect the weak, low-frequency electric fields surrounding other animals in water (primarily used for hunting). The entire lateral line system was lost in the amniote lineage with the transition to fully terrestrial life; the electrosensory division was lost independently in several lineages, including the ancestors of frogs and of teleost fishes. (Electroreception with different characteristics subsequently evolved independently within two teleost lineages.) Recent gene expression studies in a non-teleost actinopterygian fish suggest that electroreceptor ribbon synapses employ the same transmission mechanisms as hair cell ribbon synapses, and show that developing electrosensory organs express transcription factors essential for hair cell development, including Atoh1 and Pou4f3. Previous hypotheses for electroreceptor evolution suggest either that electroreceptors and hair cells evolved independently in the vertebrate ancestor from a common ciliated secondary cell, or that electroreceptors evolved from hair cells. The close developmental and putative physiological similarities implied by the gene expression data support the latter hypothesis, i.e., that electroreceptors evolved in the vertebrate ancestor as a “sister cell-type” to lateral line hair cells.


2002 ◽  
Vol 329 (2) ◽  
pp. 133-136 ◽  
Author(s):  
F Abbate ◽  
S Catania ◽  
A Germanà ◽  
T González ◽  
B Diaz-Esnal ◽  
...  

2010 ◽  
Vol 261 (1-2) ◽  
pp. 42-50 ◽  
Author(s):  
William J. Van Trump ◽  
Sheryl Coombs ◽  
Kyle Duncan ◽  
Matthew J. McHenry

2009 ◽  
Vol 5 (4) ◽  
pp. 477-479 ◽  
Author(s):  
M.J. McHenry ◽  
K.E. Feitl ◽  
J.A. Strother ◽  
W.J. Van Trump

Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish ( Danio rerio ) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13–15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.


2004 ◽  
Vol 365 (3) ◽  
pp. 186-189 ◽  
Author(s):  
A Germana ◽  
F Abbate ◽  
T González-Martı́nez ◽  
M.E del Valle ◽  
F de Carlos ◽  
...  

2012 ◽  
Vol 107 (10) ◽  
pp. 2581-2593 ◽  
Author(s):  
Julie Goulet ◽  
J. Leo van Hemmen ◽  
Sarah N. Jung ◽  
Boris P. Chagnaud ◽  
Björn Scholze ◽  
...  

Fish and aquatic frogs detect minute water motion by means of a specialized mechanosensory system, the lateral line. Ubiquitous in fish, the lateral-line system is characterized by hair-cell based sensory structures across the fish's surface called neuromasts. These neuromasts occur free-standing on the skin as superficial neuromasts (SN) or are recessed into canals as canal neuromasts. SNs respond to rapid changes of water velocity in a small layer of fluid around the fish, including the so-called boundary layer. Although omnipresent, the boundary layer's impact on the SN response is still a matter of debate. For the first time using an information-theoretic approach to this sensory system, we have investigated the SN afferents encoding capabilities. Combining covariance analysis, phase analysis, and modeling of recorded neuronal responses of primary lateral line afferents, we show that encoding by the SNs is adequately described as a linear, velocity-responsive mechanism. Afferent responses display a bimodal distribution of opposite Wiener kernels that likely reflected the two hair-cell populations within a given neuromast. Using frozen noise stimuli, we further demonstrate that SN afferents respond in an extremely precise manner and with high reproducibility across a broad frequency band (10–150 Hz), revealing that an optimal decoder would need to rely extensively on a temporal code. This was further substantiated by means of signal reconstruction of spike trains that were time shifted with respect to their original. On average, a time shift of 3.5 ms was enough to diminish the encoding capabilities of primary afferents by 70%. Our results further demonstrate that the SNs' encoding capability is linearly related to the stimulus outside the boundary layer, and that the boundary layer can, therefore, be neglected while interpreting lateral line response of SN afferents to hydrodynamic stimuli.


2019 ◽  
Author(s):  
Cristian A. Undurraga ◽  
Yunzi Gou ◽  
Pablo C. Sandoval ◽  
Viviana A. Nuñez ◽  
Miguel L. Allende ◽  
...  

ABSTRACTThe recovery of injured or lost sensory neurons after trauma, disease or aging is a major scientific challenge. Upon hearing loss or balance disorder, regeneration of mechanosensory hair cells has been observed in fish, some amphibians and under special circumstances in birds, but is absent in adult mammals. In aquatic vertebrates, hair cells are not only present in the inner ear but also in neuromasts of the lateral line system. The zebrafish lateral line neuromast has an almost unlimited capacity to regenerate hair cells. This remarkable ability is possible due to the presence of neural stem/progenitor cells within neuromasts. In order to further characterize these stem cells, we use the expression of the neural progenitor markers Sox2 and Sox3, transgenic reporter lines, and morphological and topological analysis of the different cell types within the neuromast. We reveal new sub-populations of supporting cells, the sustentacular supporting cells and the neuromast stem cells. In addition, using loss-of-function and mutants of sox2 and sox3, we find that the combined activity of both genes is essential for lateral line development and regeneration. The capability of sox2/sox3 expressing stem cells to produce new hair cells, hair cell-precursors, and supporting cells after damage was analyzed in detail by time-lapse microscopy and immunofluorescence. We are able to provide evidence that sox2/3 expressing cells are the main contributors to the regenerated neuromast, and that their daughter cells are able to differentiate into most cell types of the neuromast.


2021 ◽  
Author(s):  
Qiuxiang Zhang ◽  
Katie Kindt

Hair cells are the sensory receptors in the auditory and vestibular systems of all vertebrates, and in the lateral-line system of aquatic vertebrates. During development, spontaneous activity in hair cells shapes the formation of these sensory systems. In auditory hair cells of mice, coordinated waves of spontaneous activity can be triggered by concomitant activity in nearby supporting cells. But in mammals, developing auditory and vestibular hair cells can also autonomously generate spontaneous events independent of supporting cell activity. To date, significant progress has been made studying spontaneous activity in the auditory and vestibular systems of mammals, in isolated cultures. The purpose of this work is to explore the zebrafish lateral-line system as a model to study and understand spontaneous activity in vivo. Our work applies genetically encoded calcium indicators along with light-sheet fluorescence microscopy to visualize spontaneous calcium activity in the developing lateral-line system. Consistent with our previous work, we show that spontaneous calcium activity is present in developing lateral-line hair cells. We now show that supporting cells that surround hair cells, and cholinergic efferent terminals that directly contact hair cells are also spontaneously active. Using two-color functional imaging we demonstrate that spontaneous activity in hair cells does not correlate with activity in either supporting cells or cholinergic terminals. We find that during lateral-line development, hair cells autonomously generate spontaneous events. Using localized calcium indicators, we show that within hair cells, spontaneous calcium activity occurs in two distinct domains-the mechanosensory bundle and the presynapse. Further, spontaneous activity in the mechanosensory bundle ultimately drives spontaneous calcium influx at the presynapse. Comprehensively, our results indicate that in developing lateral-line hair cells, autonomously generated spontaneous activity originates with spontaneous mechanosensory events. Overall, with robust spontaneous activity three different cell types, the developing lateral line is a rich model to study these activities in an intact sensory organ. Future work studying this model may further our understanding of these activities and their role in sensory system formation, function and regeneration.


Sign in / Sign up

Export Citation Format

Share Document