Finite Element Analysis of Functionally Graded Thick-Cylinders Subjected to Mechanical and Thermal Loads

Author(s):  
Jasem A. Ahmed ◽  
M. A. Wahab

Functionally graded materials (FGM) are used to design structures used in high temperature environment. Hybrid pressure vessels can be designed from FGMs to incorporate improved strength, weight reduction, thermal properties, impact resistance etc. Progressive research in this area will lead to the determination of optimum design parameters and provide insight in developing manufacturing techniques of full-scale hybrid pressure vessels and experimental validation. In future, an accurate damage model will help in planning component examinations in a selective manner in order to provide useful information about material condition and predict the remaining life of the structure. A functionally graded thick-walled cylindrical vessel with varying material properties in the radial direction is considered. The cylinder is assumed to be made of one phase spatially dispersed in a matrix of another. Volume fractions of the phases are assumed to vary along the radial direction according to power laws. The gradation is represented by dividing the radial domain into finite sub-domains. The effective material properties such as modulus of elasticity, Poisson’s ratio, thermal conductivity and coefficient of thermal expansion are estimated using Mori-Tanaka [1], Hashin–Shtrikman [2], Hatta-Taya [3] and Rosen-Hashin [4] relations. The hollow cylinder is subjected to axisymmetric mechanical and thermal loadings. Finite Element Analysis is performed using a commercial package, ANSYS, to obtain temperature and stress component distribution along the thickness of the cylinder. Results are presented graphically to show the effect of internal pressure, temperature change, and gradient variation of material properties on stress components throughout the thickness.

2021 ◽  
Vol 21 (5) ◽  
pp. 2987-2991
Author(s):  
Geumtaek Kim ◽  
Daeil Kwon

Along with the reduction in semiconductor chip size and enhanced performance of electronic devices, high input/output density is a desired factor in the electronics industry. To satisfy the high input/output density, fan-out wafer-level packaging has attracted significant attention. While fan-out wafer-level packaging has several advantages, such as lower thickness and better thermal resistance, warpage is one of the major challenges of the fan-out wafer-level packaging process to be minimized. There have been many studies investigating the effects of material properties and package design on warpage using finite element analysis. Current warpage simulations using finite element analysis have been routinely conducted with deterministic input parameters, although the parameter values are uncertain from the manufacturing point of view. This assumption may lead to a gap between the simulation and the field results. This paper presents an uncertainty analysis of wafer warpage in fan-out wafer-level packaging by using finite element analysis. Coefficient of thermal expansion of silicon is considered as a parameter with uncertainty. The warpage and the von Mises stress are calculated and compared with and without uncertainty.


Author(s):  
Ashish Tiwari ◽  
Pankaj Wahi ◽  
Niraj Sinha

Human tibia, the second largest bone in human body, is made of complex biological material having inhomogeneity and anisotropy in such a manner that makes it a functionally graded material. While analyses of human tibia assuming it to be made of different material regions have been attempted in past, functionally graded nature of the bone in the mechanical analysis has not been considered. This study highlights the importance of functional grading of material properties in capturing the correct stress distribution from the finite element analysis (FEA) of human tibia under static loading. Isotropic and orthotropic material properties of different regions of human tibia have been graded functionally in three different manners and assigned to the tibia model. The nonfunctionally graded and functionally graded models of tibia have been compared with each other. It was observed that the model in which functional grading was not performed, uneven distribution and unrealistic spikes of stresses occurred at the interfaces of different material regions. On the contrary, the models with functional grading were free from this potential artifact. Hence, our analysis suggests that functional grading is essential for predicting the actual distribution of stresses in the entire bone, which is important for biomechanical analysis. We find that orthotropic nature of the bone tends to increase the maximum von Mises stress in the entire tibia, while inclusion of cross-sectional inhomogeneity typically increases the stresses across normal cross section. Accordingly, our analysis suggests that both orthotropy as well as cross-sectional inhomogeneity should be included to correctly capture the stress distribution in the bone.


2007 ◽  
Vol 04 (04) ◽  
pp. 653-670 ◽  
Author(s):  
H. C. JUNG ◽  
S. KRUMDIECK

Laser forming is a flexible sheet metal manufacturing technique capable of producing various shapes, without hard tools and external forces, by irradiation across the surface of the metal piece. A three-dimensional thermal-elasto-plastic (TEP) finite element model for a straight line laser forming process has been developed during the course of this study, which simulates bend angles and temperature distributions. Laser forming process optimization and material sensitivity are investigated. In order to seek the optimal process conditions to generate a desired bend angle in the multi-scan laser bending process, an optimization algorithm based on the approximation of objective function and state variables is integrated into the numerical model. An optimal set of process parameters such as laser power, scan speed, beam diameter and the number of scans are obtained with optimization procedure. In order to assess process sensitivity to material roperties, associations between bend angle and material properties are statistically determined using the Pearson product-moment correlation coefficient via Monte Carlo simulations, for which a large number of the finite element simulations are carried out. The material properties of interest include the coefficient of thermal expansion, thermal conductivity, specific heat, modulus of elasticity, and Poisson's ratio. Results show that the process optimization coupled with finite element analysis can be used to determine processing parameters, and that the material properties of primary importance are the coefficient of thermal expansion, thermal conductivity and specific heat.


2011 ◽  
Vol 65 ◽  
pp. 281-284 ◽  
Author(s):  
Cai Li Zhang ◽  
Fan Yang

According to pressure vessel material waste problem in the traditional design, the finite element technique is used to pressure vessel optimization design in this paper. Firstly, the finite element analysis is applied to carry out stress calculation, and we extracted the related results parameters for following calculation. Then we conducted the quantitative calculation after choosing optimization design method, and got the best design parameters which meet performance indexes. At last, we conducted the optimization design of pressure vessels using this technology. Practical results prove the validity and the practicability of this method in the pressure vessels design.


2020 ◽  
Vol 41 (12) ◽  
pp. 1787-1804
Author(s):  
N. V. Viet ◽  
W. Zaki ◽  
Quan Wang

AbstractAdvancements in manufacturing technology, including the rapid development of additive manufacturing (AM), allow the fabrication of complex functionally graded material (FGM) sectioned beams. Portions of these beams may be made from different materials with possibly different gradients of material properties. The present work proposes models to investigate the free vibration of FGM sectioned beams based on one-dimensional (1D) finite element analysis. For this purpose, a sample beam is divided into discrete elements, and the total energy stored in each element during vibration is computed by considering either Timoshenko or Euler-Bernoulli beam theories. Then, Hamilton’s principle is used to derive the equations of motion for the beam. The effects of material properties and dimensions of FGM sections on the beam’s natural frequencies and their corresponding mode shapes are then investigated based on a dynamic Timoshenko model (TM). The presented model is validated by comparison with three-dimensional (3D) finite element simulations of the first three mode shapes of the beam.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


2012 ◽  
Vol 538-541 ◽  
pp. 3253-3258 ◽  
Author(s):  
Jun Jian Xiao

According to the results of finite element analysis (FEA), when the diameter of opening of the flat cover is no more than 0.5D (d≤0.5D), there is obvious stress concentration at the edge of opening, but only existed within the region of 2d. Increasing the thickness of flat covers could not relieve the stress concentration at the edge of opening. It is recommended that reinforcing element being installed within the region of 2d should be used. When the diameter of openings is larger than 0.5D (d>0.5D), conical or round angle transitions could be employed at connecting location, with which the edge stress decreased remarkably. However, the primary stress plus the secondary stress would be valued by 3[σ].


Sign in / Sign up

Export Citation Format

Share Document