Parametric Stability of a Nonlinear Rotating Blade

Author(s):  
Fengxia Wang ◽  
Albert C. J. Luo

The stability of period-1 motions of a rotating blade with geometric nonlinearity is studied. The roles of cubic stiffening geometric term are considered in the study of nonlinear periodic motions and its stability and bifurcations of a rotating blade. The nonlinear model of a rotating blade is reduced to the ordinary differential equations through the Galerkin method, and the gyroscopic systems with parametric excitations are obtained. The generalized harmonic balance method is employed to determine the period-1 solutions and the corresponding stability and bifurcations.

Author(s):  
Fengxia Wang

The role of the “geometric stiffening” nonlinearities played in the stability analysis of a rotating beam is investigated. It is a well established fact that nonlinear theory must be employed to capture geometric stiffening effect, which has been extensively investigated. In this work, two models are built for a rotating blade with periodically perturbed rotation rate, one is the “effective load” linear model and the other is “geometric stiffening” nonlinear model. Both of these two models are discretisized via Galerkin’s method and a set of parametric excited gyroscopic equations are obtained. The dynamic stability of these two models are studied and compared by the generalized harmonic balance method.


Author(s):  
Bo Yu ◽  
Albert C. J. Luo

In this paper, periodic motions of a periodically forced, plunged galloping oscillator are investigated. The analytical solutions of stable and unstable periodic motions are obtained by the generalized harmonic balance method. Stability and bifurcations of the periodic motions are discussed through the eigenvalue analysis. The saddle-node and Hopf bifurcations of periodic motions are presented through frequency-amplitude curves. The Hopf bifurcation generates the quasiperiodic motions. Numerical simulations of stable and unstable periodic motions are illustrated.


2018 ◽  
Vol 28 (14) ◽  
pp. 1830046 ◽  
Author(s):  
Albert C. J. Luo ◽  
Siyu Guo

In this paper, analytical solutions of periodic evolutions of the Brusselator with a harmonic diffusion are obtained through the generalized harmonic balance method. The stability and bifurcation of the periodic evolutions are determined. The bifurcation tree of period-1 to period-8 evolutions of the Brusselator is presented through frequency-amplitude characteristics. To illustrate the accuracy of the analytical periodic evolutions of the Brusselator, numerical simulations of the stable period-1 to period-8 evolutions are completed. The harmonic amplitude spectrums are presented for the accuracy of the analytical periodic evolution, and each harmonics contribution on the specific periodic evolution can be achieved. This study gives a better understanding of periodic evolutions to chaos in the slowly varying Brusselator system, and the bifurcation tree of period-1 evolution to chaos are clearly demonstrated, which can help one understand a route of periodic evolution to chaos in chemical reaction oscillators. From this study, the generalized harmonic balance method is a good method for slowly varying systems, and such a method provides very accurate solutions of periodic motions in such nonlinear systems.


Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, period-1 motions in a quadratic nonlinear oscillator under excitation are investigated by the generalized harmonic balance method. The analytical solutions of period-1 motion for such an oscillator are presented by the Fourier series expansions. The stability and bifurcation analysis of period-1 motion is carried out via eigenvalue analysis. To verify the approximate analytical solutions, numerical simulations are performed for a better understanding of the parameter characteristics of the period-1 solutions, and the stable and unstable periodic motions are illustrated. The analytical period-1 solutions are different from the perturbation analysis.


1998 ◽  
Vol 120 (1) ◽  
pp. 181-187 ◽  
Author(s):  
Y. B. Kim

A multiple harmonic balance method is presented in this paper for obtaining the aperiodic steady-state solution of a piecewise-linear system. As the method utilizes general and systematic computational procedures, it can be applied to analyze the multi-tone or combination-tone responses for the higher dimensional nonlinear systems such as rotors. Moreover, it is capable of informing the stability of the obtained solution using Floquet theory. To demonstrate the systematic approach of the new method, the almost periodic forced vibration of an articulated loading platform (ALP) with a piecewise-linear stiffness is computed as an example.


Author(s):  
Albert C. J. Luo ◽  
Jianzhe Huang

The analytical solutions of the period-1 motions for a hardening Duffing oscillator are presented through the generalized harmonic balance method. The conditions of stability and bifurcation of the approximate solutions in the oscillator are discussed. Numerical simulations for period-1 motions for the damped Duffing oscillator are carried out.


Author(s):  
O. Thomas ◽  
A. Lazarus ◽  
C. Touze´

In this paper, we present a validation on a practical example of a harmonic-based numerical method to determine the local stability of periodic solutions of dynamical systems. Based on Floquet theory and Fourier series expansion (Hill method), we propose a simple strategy to sort the relevant physical eigenvalues among the expanded numerical spectrum of the linear periodic system governing the perturbed solution. By mixing the Harmonic Balance Method and Asymptotic Numerical Method continuation technique with the developed Hill method, we obtain a purely-frequency based continuation tool able to compute the stability of the continued periodic solutions in a reduced computation time. This procedure is validated by considering an externally forced string and computing the complete bifurcation diagram with the stability of the periodic solutions. The particular coupled regimes are exhibited and found in excellent agreement with results of the literature, allowing a method validation.


Author(s):  
Hamid Khorrami ◽  
Ramin Sedaghati ◽  
Subhash Rakheja

In this work, the effect of a crack on the vibrational properties of a shaft-disc system has been studied applying a generalized harmonic balance method. In the reviewed literature, the reported methods to find the unbalance response of a continuous shaft-disc system provide only the first harmonic component of the response; whereas, the presented method gives the super-harmonic components as well. The shaft-disk system consists of a flexible shaft with a single rigid disc mounted on rigid short bearing supports. The shaft contains a transverse breathing crack (fatigue crack). The main concept for crack detection in vibration-based methods is basically the investigation of crack-induced changes in the selected vibrational properties. Shaft critical speeds and harmonic and super-harmonic components of the unbalance lateral response have been used as typical vibrational properties for crack detection in a rotating shaft system. A generalized harmonic balance method has been developed to efficiently investigate changes in vibrational properties due to the effect of crack properties, depth and location. The results of the developed analytical model have been compared with those obtained from the finite element model and close agreement has been observed.


2014 ◽  
Vol 24 (12) ◽  
pp. 1450159 ◽  
Author(s):  
Fengxia Wang ◽  
Yuhui Qu

A rotating beam subjected to a torsional excitation is studied in this paper. Both quadratic and cubic geometric stiffening nonlinearities are retained in the equation of motion, and the reduced model is obtained via the Galerkin method. Saddle-node bifurcations and Hopf bifurcations of the period-1 motions of the model were obtained via the higher order harmonic balance method. The period-2 and period-4 solutions, which are emanated from the period-1 and period-2 motions, respectively, are obtained by the combined implementation of the harmonic balance method, Floquet theory, and Discrete Fourier transform (DFT). The analytical periodic solutions and their stabilities are verified through numerical simulation.


Author(s):  
Zhiwei Liu ◽  
Yuefang Wang

Many rotor assemblies of industrial turbomachines are supported by oil-lubricated bearings. It is well known that the operation safety of these machines is highly dependent on rotors whose stability is closely related to the whirling motion of lubricant oil. In this paper, the problem of transverse motion of rotor systems considering bearing nonlinearity is revisited. A symmetric, rigid Jeffcott rotor is modeled considering unbalanced mass and short bearing forces. A semi-analytical, seminumerical approach is presented based on the generalized harmonic balance method (GHBM) and the Newton–Raphson iteration scheme. The external load of the system is decomposed into a Fourier series with multiple harmonic loads. The amplitude and phase with respect to each harmonic load are solved iteratively. The stability of the motion response is analyzed through identification of eigenvalues at the fixed point mapped from the linearized system using harmonic amplitudes. The solutions of the present approach are compared to those from time-domain numerical integrations using the Runge–Kutta method, and they are found to be in good agreement for stable periodic motions. It is revealed through bifurcation analysis that evolution of the motion in the nonlinear rotor-bearing system is complicated. The Hopf bifurcation (HB) of synchronous vibration initiates oil whirl with varying mass eccentricity. The onset of oil whip is identified when the saddle-node bifurcation of subsynchronous vibration takes place at the critical value of parameter.


Sign in / Sign up

Export Citation Format

Share Document