Effect of the Wavy Walls on the Turbulent Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels

Author(s):  
Aounallah Mohammed ◽  
Miloud Abdelkrim ◽  
Belkadi Mustapha ◽  
Adjlout Lahouari ◽  
Imine Omar

Numerical predictions of three-dimensional turbulent flow and heat transfer are presented for rotating two-pass rectangular channel with an aspect ratio (AR = 1:4). The aim of this study is to investigate the effect of the wavy walls of the heated part on the cooling enhancement. The influence of the wave length is also explored. Several calculations have been performed with Reynolds number (Re = 10 000), rotation number (R0 = 0.0 to 0.14) and coolant-to-wall density ratio (1-(T0 /Tw) is limited to 0.13. The commercial code ANSYS FLUENT is used to solve the steady 3D Reynolds–Averaged Navier–Stokes (RANS) equations. The performances of the k-omega SST and the second moment closure RSM models are evaluated by comparing their numerical results against the available experimental data. Detailed predictions of mean temperature, secondary flow and Nusselt number distributions are presented.

2006 ◽  
Vol 129 (6) ◽  
pp. 685-696 ◽  
Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H∕D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1∕D) and span-wise (S2∕D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han ◽  
James D. Heidmann

Numerical predictions of three-dimensional flow and heat transfer are presented for rotating two-pass rectangular channel with 45-deg rib turbulators. Three channels with different aspect ratios (AR=1:1; AR=1:2; AR=1:4) were investigated. Detailed predictions of mean velocity, mean temperature, and Nusselt number for two Reynolds numbers (Re = 10,000 and Re = 100,000) were carried out. The rib height is fixed as constant and the rib-pitch-to-height ratio (P/e) is 10, but the rib height-to-hydraulic diameter ratios (e/Dh) are 0.125, 0.094, and 0.078, for AR=1:1, AR=1:2, and AR=1:4 channel, respectively. The channel orientations are set at 90 deg, corresponding to the cooling passages between mid-portion and the leading edge of a turbine blade. The rotation number varies from 0.0 to 0.28 and the inlet coolant-to-wall density ratio varies from 0.13 to 0.40, respectively. The primary focus of this study is the effect of the channel aspect ratio on the nature of the flow and heat transfer enhancement in a rectangular ribbed channel under rotating conditions. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure to provide detailed resolution of the Reynolds stresses and turbulent heat fluxes induced by the rib turbulators under both the stationary and rotating conditions.


Author(s):  
Guoguang Su ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Computations with multi-block chimera grids were performed to study the three-dimensional turbulent flow and heat transfer in a rotating rectangular channel with staggered arrays of pin-fins. The channel aspect ratio (AR) is 4:1, the pin length to diameter ratio (H/D) is 2.0, and the pin spacing to diameter ratio is 2.0 in both the stream-wise (S1/D) and span-wise (S2/D) directions. A total of six calculations have been performed with various combinations of rotation number, Reynolds number, and coolant-to-wall density ratio. The rotation number and inlet coolant-to-wall density ratio varied from 0.0 to 0.28 and from 0.122 to 0.20, respectively, while the Reynolds number varied from 10,000 to 100,000. For the rotating cases, the rectangular channel was oriented at 150 deg with respect to the plane of rotation to be consistent with the configuration of the gas turbine blade. A Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure for detailed predictions of mean velocity, mean temperature, and heat transfer coefficient distributions.


2002 ◽  
Vol 124 (2) ◽  
pp. 242-250 ◽  
Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45-deg rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio e/Dh is 0.094 and the rib-pitch-to-height ratio P/e is 10. Two channel orientations are studied: β=90deg and 135 deg, corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Author(s):  
Mohammad Al-Qahtani ◽  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a rotating two-pass rectangular channel with 45° rib turbulators and channel aspect ratio of 2:1. The rib height-to-hydraulic diameter ratio (e/Dh) is 0.094 and the rib-pitch-to-height ratio (P/e) is 10. Two channel orientations are studied: β = 90° and β = 135° corresponding to the mid-portion and the trailing edge regions of a turbine blade, respectively. The focus of this study is twofold; namely, to investigate the effect of the channel aspect ratio and the channel orientation on the nature of the flow and heat transfer enhancement. A multi-block Reynolds-Averaged Navier-Stokes (RANS) method was employed in conjunction with a near-wall second-moment turbulence closure. In the present method, the convective transport equations for momentum, energy, and turbulence quantities are solved in curvilinear, body-fitted coordinates using the finite-analytic method. The numerical results compare reasonably well with experimental data for both stationary and rotating rectangular channels with rib turbulators at Reynolds number (Re) of 10,000, rotation number (Ro) of 0.11 and inlet coolant-to-wall density ratio (Δρ/ρ) of 0.115.


Author(s):  
Aya Kito ◽  
Kazuaki Sugawara ◽  
Hiroyuki Yoshikawa ◽  
Terukazu Ota

The direct numerical simulation methodology was employed to analyze the unsteady features of a three-dimensional separated flow and heat transfer around a downward step in a rectangular channel, and to clarify systematically the channel expansion ratio effects upon them. Numerical calculations were carried out using the finite difference method. The Reynolds number Re based on the mean velocity at inlet and the step height was varied from 300 to 1000. The channel expansion ratio ER is 1.5, 2.0 and 3.0 under a step aspect ratio of 36.0. It is found that the flow is steady upto Re = 500 but becomes sensibly unsteady at Re = 700 for all the three expansion ratios. In the case of ER = 2.0, the separated shear layer is most unstable. In the case of ER = 1.5, the longitudinal vortices formed near the side walls of channel are strongest. Nusselt number reaches its maximum in the reattachment flow region and also in the neighborhood of the side wall, and their locations depend greatly upon ER and Re.


2005 ◽  
Author(s):  
Hiroyuki Yoshikawa ◽  
Kimitake Ishikawa ◽  
Terukazu Ota

Numerical results of a three-dimensional unsteady separated flow and heat transfer in a sudden expansion rectangular channel are presented. A direct numerical simulation methodology was employed in the calculations using the finite difference method. Treated in the present study is a rectangular channel of aspect ratio AR = 4.0 and expansion ratio ER = 2.5 in a Reynolds number range from 200 to 1000. It is found that the flow becomes unsteady at Re = 400 and severely complicated at Re = 500 to 1000. The heat transfer characteristics are presented and discussed in relation to the flow ones.


2001 ◽  
Vol 123 (3) ◽  
pp. 563-575 ◽  
Author(s):  
Yong-Jun Jang ◽  
Hamn-Ching Chen ◽  
Je-Chin Han

Numerical predictions of three-dimensional flow and heat transfer are presented for a two-pass square channel with and without 60 deg angled parallel ribs. Square sectioned ribs were employed along one side surface. The rib height-to-hydraulic diameter ratio e/Dh is 0.125 and the rib pitch-to-height ratio (P/e) is 10. The computation results were compared with the experimental data of Ekkad and Han [1] at a Reynolds number (Re) of 30,000. A multi-block numerical method was used with a chimera domain decomposition technique. The finite analytic method solved the Reynolds-Averaged Navier Stokes equation in conjunction with a near-wall second-order Reynolds stress (second-moment) closure model, and a two-layer k-ε isotropic eddy viscosity model. Comparing the second-moment and two-layer calculations with the experimental data clearly demonstrated that the angled rib turbulators and the 180 deg sharp turn of the channel produced strong non-isotropic turbulence and heat fluxes, which significantly affected the flow fields and heat transfer coefficients. The near-wall second-moment closure model provides an improved heat transfer prediction in comparison with the k-ε model.


Sign in / Sign up

Export Citation Format

Share Document