Numerical and Experimental Investigation of Membrane Wing for Micro Aerial Vehicle Applications

Author(s):  
Igor Petrović ◽  
Sean P. Shea ◽  
Ian P. Smith ◽  
Franc Kosel ◽  
Pier Marzocca

Micro-Air-Vehicles (MAV) flight regimes differs significantly from larger scales airplanes. They are operating at low Reynolds numbers of approximate 104, cruising at speed about 12m/s, and are capable of agile maneuvers in limited space environment. They are compact and easily stowable to facilitate transportation. However, due to the small size, they are usually more vulnerable to the wind gusts with significant complexities associated to their flight mechanics, stability and control, which also makes difficult to quantify flight qualities and performances. Furthermore, complex aerodynamics can produce loading scenarios leading to the destruction of the vehicle during flight operation. To minimize the size of the MAV when not in use, their wings are stowed within the body of the vehicle, and are deployed during operation. To supplement the bulk of knowledge in MAV aero-mechanics, the study of the aerodynamic characteristics of a deformable membrane MAV wing is carried out in this paper. The analysis of the membrane airfoil is performed using a fluid-structure interaction 2D model, to select a set of optimal airfoil parameters for the intended flight regime. Numerical simulations are supplied and validated with an M AV model tested in the wind tunnel.

2003 ◽  
Vol 17 (7) ◽  
pp. 617-640 ◽  
Author(s):  
Scott M. Ettinger ◽  
Michael C. Nechyba ◽  
Peter G. Ifju ◽  
Martin Waszak

PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e85203 ◽  
Author(s):  
Dennis Evangelista ◽  
Griselda Cardona ◽  
Eric Guenther-Gleason ◽  
Tony Huynh ◽  
Austin Kwong ◽  
...  

2013 ◽  
Author(s):  
Dennis Evangelista ◽  
Griselda Cardona ◽  
Eric Guenther-Gleason ◽  
Tony Huynh ◽  
Austin Kwong ◽  
...  

We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur,Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. WhileM. guilived afterArchaeopteryxand likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. Now published in PLOS ONE http://dx.plos.org/10.1371/journal.pone.0085203


2021 ◽  
Author(s):  
Yukei Oyama

This undergraduate paper demonstrates the design, analysis, and manufacturing of a rocket deployable electric powered experimental unmanned aerial vehicle. The design process begins with defining the volume and dimensions of the allocated payload space for the UAV in the rocket. These dimensions are given by the aerostructures sub team in the Ryerson Rocketry Club. The dimensions given were used to determine the best configuration for the mission. The wing loading, power loading and endurance of the UAV are obtained from the constrained payload volume in the rocket and the avionics system of the of the UAV. The wing area, UAV weight and power requirements were calculated based on the previously determined values. The power requirement determines the motor size and propeller configuration. Aerodynamics, stability, and control were based the selected airfoil and obtained wing area. After completing the design, foam, additive manufacturing, and composite layups were used to create prototypes of the UAV. These prototypes were used to iterate the aircraft and address any immediate changes. The chosen design is a foldable flying wing, once deployed from the rocket has a wingspan of 70 inches, an aspect ratio of 13.35 and a surface area of 367 in2 . A prototype was created to prove the design feasibility of the UAV. The prototype proved to function as planned, capable of gliding, powered flight, and takeoff.


2021 ◽  
Author(s):  
Yukei Oyama

This undergraduate paper demonstrates the design, analysis, and manufacturing of a rocket deployable electric powered experimental unmanned aerial vehicle. The design process begins with defining the volume and dimensions of the allocated payload space for the UAV in the rocket. These dimensions are given by the aerostructures sub team in the Ryerson Rocketry Club. The dimensions given were used to determine the best configuration for the mission. The wing loading, power loading and endurance of the UAV are obtained from the constrained payload volume in the rocket and the avionics system of the of the UAV. The wing area, UAV weight and power requirements were calculated based on the previously determined values. The power requirement determines the motor size and propeller configuration. Aerodynamics, stability, and control were based the selected airfoil and obtained wing area. After completing the design, foam, additive manufacturing, and composite layups were used to create prototypes of the UAV. These prototypes were used to iterate the aircraft and address any immediate changes. The chosen design is a foldable flying wing, once deployed from the rocket has a wingspan of 70 inches, an aspect ratio of 13.35 and a surface area of 367 in2 . A prototype was created to prove the design feasibility of the UAV. The prototype proved to function as planned, capable of gliding, powered flight, and takeoff.


2018 ◽  
Vol 58 (2) ◽  
pp. 77
Author(s):  
Rahman Mohammadi Farhadi ◽  
Vyacheslav Kortunov ◽  
Andrii Molchanov ◽  
Tatiana Solianyk

Stability and control derivatives of Skywalker X8 flying wing from flight-test data are estimated by using the combination of the output error and least square methods in the presence of the wind. Data is collected from closed loop flight tests with a proportional-integral-derivative (PID) controller that caused data co-linearity problems for the identification of the unmanned aerial vehicle (UAV) dynamic system. The data co-linearity problem is solved with a biased estimation via priori information, parameter fixing and constrained optimization, which uses analytical values of aerodynamic parameters, the level of the identifiability and sensitivity of the measurement vector to the parameters. Estimated aerodynamic parameters are compared with the theoretically calculated coefficients of the UAV, moreover, the dynamic model is validated with additional flight-test data and small covariances of the estimated parameters.


Sign in / Sign up

Export Citation Format

Share Document