scholarly journals Computational modeling of the aerodynamic characteristics and flight mechanics and control of an unmanned aerial vehicle

2008 ◽  
Author(s):  
Leon Mark Choon Seng Tan
Author(s):  
Igor Petrović ◽  
Sean P. Shea ◽  
Ian P. Smith ◽  
Franc Kosel ◽  
Pier Marzocca

Micro-Air-Vehicles (MAV) flight regimes differs significantly from larger scales airplanes. They are operating at low Reynolds numbers of approximate 104, cruising at speed about 12m/s, and are capable of agile maneuvers in limited space environment. They are compact and easily stowable to facilitate transportation. However, due to the small size, they are usually more vulnerable to the wind gusts with significant complexities associated to their flight mechanics, stability and control, which also makes difficult to quantify flight qualities and performances. Furthermore, complex aerodynamics can produce loading scenarios leading to the destruction of the vehicle during flight operation. To minimize the size of the MAV when not in use, their wings are stowed within the body of the vehicle, and are deployed during operation. To supplement the bulk of knowledge in MAV aero-mechanics, the study of the aerodynamic characteristics of a deformable membrane MAV wing is carried out in this paper. The analysis of the membrane airfoil is performed using a fluid-structure interaction 2D model, to select a set of optimal airfoil parameters for the intended flight regime. Numerical simulations are supplied and validated with an M AV model tested in the wind tunnel.


2011 ◽  
Vol 383-390 ◽  
pp. 1524-1530
Author(s):  
Hui Song ◽  
Xin Chen

The Unmanned Aerial Vehicle (UAV) has special dynamical characteristics in ground motion different from that of flight in the airborne. The forces and moments on the ground to the UAV differ during taxiing, according to the different mechanical and aerodynamic characteristics. An all-states nonlinear model is established by studying on a sample UAV. Rotation speed and lift off speed is determined, finally a control law including longitudinal and lateral control for automatic take-off is designed. Results of simulation show that the model and control scheme can not only join the ground taxiing and flight in the airborne smoothly, but also has a high value in realizing engineering project.


Author(s):  
Hongbo Xin ◽  
Yujie Wang ◽  
Xianzhong Gao ◽  
Qingyang Chen ◽  
Bingjie Zhu ◽  
...  

The tail-sitter unmanned aerial vehicles have the advantages of multi-rotors and fixed-wing aircrafts, such as vertical takeoff and landing, long endurance and high-speed cruise. These make the tail-sitter unmanned aerial vehicle capable for special tasks in complex environments. In this article, we present the modeling and the control system design for a quadrotor tail-sitter unmanned aerial vehicle whose main structure consists of a traditional quadrotor with four wings fixed on the four rotor arms. The key point of the control system is the transition process between hover flight mode and level flight mode. However, the normal Euler angle representation cannot tackle both of the hover and level flight modes because of the singularity when pitch angle tends to [Formula: see text]. The dual-Euler method using two Euler-angle representations in two body-fixed coordinate frames is presented to couple with this problem, which gives continuous attitude representation throughout the whole flight envelope. The control system is divided into hover and level controllers to adapt to the two different flight modes. The nonlinear dynamic inverse method is employed to realize fuselage rotation and attitude stabilization. In guidance control, the vector field method is used in level flight guidance logic, and the quadrotor guidance method is used in hover flight mode. The framework of the whole system is established by MATLAB and Simulink, and the effectiveness of the guidance and control algorithms are verified by simulation. Finally, the flight test of the prototype shows the feasibility of the whole system.


2018 ◽  
Vol 1005 ◽  
pp. 012015
Author(s):  
Nurhayyan H. Rosid ◽  
E. Irsyad Lukman ◽  
M. Ahmad Fadlillah ◽  
M. Agoes Moelyadi

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yunping Liu ◽  
Xijie Huang ◽  
Yonghong Zhang ◽  
Yukang Zhou

This paper focuses on the dynamic stability analysis of a manipulator mounted on a quadrotor unmanned aerial vehicle, namely, a manipulating unmanned aerial vehicle (MUAV). Manipulator movements and environments interaction will extremely affect the dynamic stability of the MUAV system. So the dynamic stability analysis of the MUAV system is of paramount importance for safety and satisfactory performance. However, the applications of Lyapunov’s stability theory to the MUAV system have been extremely limited, due to the lack of a constructive method available for deriving a Lyapunov function. Thus, Lyapunov exponent method and impedance control are introduced, and the Lyapunov exponent method can establish the quantitative relationships between the manipulator movements and the dynamics stability, while impedance control can reduce the impact of environmental interaction on system stability. Numerical simulation results have demonstrated the effectiveness of the proposed method.


2010 ◽  
pp. 77-93 ◽  
Author(s):  
Kenzo Nonami ◽  
Farid Kendoul ◽  
Satoshi Suzuki ◽  
Wei Wang ◽  
Daisuke Nakazawa

2021 ◽  
pp. 25-46
Author(s):  
Ayad Al-Mahturi ◽  
Fendy Santoso ◽  
Matthew A. Garratt ◽  
Sreenatha G. Anavatti

2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Wirachman Wisnoe ◽  
Rizal E.M. Nasir ◽  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Firdaus Muhammad

In this paper, a study of aerodynamic characteristics of UiTM's Blended-Wing-Body Unmanned Aerial Vehicle (BWB-UAV) Baseline-II in terms of side force, drag force and yawing moment coefficients are presented through Computational Fluid Dynamics (CFD) simulation. A vertical rudder is added to the aircraft at the rear centre part of the fuselage as yawing control surface. The study consists of varying the side slip angles for various rudder deflection angles and to plot the results for each aerodynamic parameter. The comparison with other yawing control surface for the same aircraft obtained previously are also presented. For validation purpose, the lift and drag coefficients are compared with the results obtained from wind tunnel experiments. 


Sign in / Sign up

Export Citation Format

Share Document