A Crystallographic Approach to Life Prediction Analysis of a Turbine Engine Blade to Disk Attachment

Author(s):  
Sam Naboulsi

Fretting fatigue raises many challenges in modeling and predicting of a turbine engine blade disk attachment response. It occurs when the blade and disk are pressed together in contact and experience a small oscillating relative displacement due to variations in engine speed and vibratory loading. Fretting causes a very high local stress near the edge of contact resulting in wear, nucleation of cracks, and their growth, which can result in significant reduction in the life of the material. Fretting depends on geometry, loading conditions, residual stresses, nonlinear response, and surface roughness, among other factors. These complexities make fretting a significant driver of fatigue damage and failure risk of disks. That is, fretting is often the root cause of the nucleation of cracks at attachments of structural components, and the cyclic plastic cumulative deformation and damage occur within depths of only several grains. Hence, resolving the deformation at the scale of individual grains, in order to understand the crystallographic orientation dependence of plasticity driven fretting fatigue and its relation to surface contact conditions, is important. In this study, a finite strain computational crystal plasticity constitutive law will be implemented to simulate and investigate time dependent response of turbine engine blade to disk attachment. The present work leverages the computational model of early efforts, which focused on modeling damage initiation and propagation due to fretting fatigue using micro-thermo-mechanical model, and further enhances the capabilities of capturing the micro-scale nature of the fretting small oscillatory relative displacement at grain level. These efforts provided a high fidelity approach to capture the life of the material at the blade to disk attachment and to simulate the realistic mechanism associated with fretting.

Author(s):  
Sam Naboulsi

Fretting is an important problem for the operators of turbine engines, and it occurs when the blade and disk are pressed together in contact and experience a small oscillating relative displacement due to variations in engine speed and vibratory loading. It is a significant driver of fatigue damage and failure risk of disks. The present effort focuses on the damage initiation and propagation due to fretting fatigue. It introduces a micro-thermo-mechanical damage model that is capable of capturing the micro-scale nature of the fretting small oscillatory relative displacement. The micro-scale capability of the damage model is required to capture the effect of very high local stress near the edge of contact, which results in wear, nucleation of cracks, and their growth. It also provides a high fidelity approach to capture the significant reduction in the life of the material at the blade to disk attachment. To further understand the role of damage in the fretting initiated fracture, a specially developed novel fretting crack initiation model is incorporated in the analysis. Such combination makes it possible to simulate the realistic mechanism associated with fretting. The models are incorporated in a fretting fatigue simulation of an actual blade and disk attachment configuration. The results are validated with data obtained from an actual blade and disk attachment test using a representative loading mission. The results show consistency and accuracy with experimental data.


Author(s):  
Sam Naboulsi

Life prediction of turbine engines is crucial part of the management and sustainment plan to aircraft jet engine. Fretting is one of the primary phenomena that leads to damage or failure of blade-disk attachments. Fretting is often the root cause of nucleation of cracks at attachment of structural components at or in the vicinity of the contact surfaces. It occurs when the blade and disk are pressed together in contact and experience a small oscillating relative displacement due to variations in engine speed and vibratory loading. It is a significant driver of fatigue damage and failure risk of disk blade attachments. Fretting is a complex phenomenon that depends on geometry, loading conditions, residual stresses, and surface roughness, among other factors. These complexities also go beyond the physics of material interactions and into the computational domain. This is an ongoing effort, and the Author has been working on computationally modeling the fretting fatigue phenomenon and damage in blade-disk attachment. The model has been evolving in the past few years, and it has been addressing various fretting conditions. The present effort includes the thermal effect and temperature fluctuation during engine operation, and it models the effects of blade to disk attachment’s thermal conditions and its influence on fretting fatigue damage. It further extends the earlier model to include a coupled fatigue damage model. It allows modeling higher speeds and longer durability associated with blade disk attachments. Finally, to demonstrate its capabilities and taking advantage of experimental validation model, the most recent numerical simulations will be presented.


Author(s):  
Thomas Christiner ◽  
Johannes Reiser ◽  
István Gódor ◽  
Wilfried Eichlseder ◽  
Franz Trieb ◽  
...  

In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, relative motion of contacting bodies, combined with high loads transmitted via the contact surface lead to fretting fatigue failure. For a reliable prediction of in service performance load type, different damage and failure mechanisms that may be activated during operation have to be known. In this contribution selected results of a currently conducted research project are presented. The aim of this study was to examine the material behaviour of a surface stressed steel. The influence of the fretting regime on fatigue properties has been investigated.


1988 ◽  
Vol 110 (3) ◽  
pp. 517-524 ◽  
Author(s):  
Y. Berthier ◽  
Ch. Colombie´ ◽  
L. Vincent ◽  
M. Godet

Fretting wear and fretting fatigue are governed by the rate of formation of materials (third-bodies) between the initial contact surfaces. Furthermore, the third-bodies must be maintained within the contact. The issue of the race between third-body formation and subsurface damage conditions the effect of fretting on fatigue. That race lasts for only a few hundred or at best a few thousand cycles. Effective third-bodies (or good anti-fretting lubricants) must adhere strongly to the rubbing surfaces, and be able to accommodate at least part of the relative displacement. Great care in the design of test equipment has to be exercised before definitive results on the effect of amplitude and frequency on either fretting fatigue or fretting wear can be obtained for a given contact condition, given materials and given environments.


Author(s):  
Michael P. Enright ◽  
Kwai S. Chan ◽  
Jonathan P. Moody ◽  
Patrick J. Golden ◽  
Ramesh Chandra ◽  
...  

Fretting fatigue is a random process that continues to be a major source of damage associated with the failure of aircraft gas turbine engine components. Fretting fatigue is dominated by the fatigue crack growth phase and is strongly dependent on the magnitude of the stress values in the contact region. These stress values often have the most influence on small cracks where traditional long-crack fracture mechanics may not apply. A number of random variables can be used to model the uncertainty associated with the fatigue crack growth process. However, these variables can often be reduced to a few primary random variables related to the size and location of the initial crack, variability associated with applied stress and crack growth life models, and uncertainty in the quality and frequency of non-deterministic inspections. In this paper, an approach is presented for estimating the risk reduction associated with non-destructive inspection of aircraft engine components subjected to fretting fatigue. Contact stress values in the blade attachment region are estimated using a fine mesh finite element model coupled with a singular integral equation solver and combined with bulk stress values to obtain the total stress gradient at the edge of contact. This stress gradient is applied to the crack growth life prediction of a mode I fretting fatigue crack. A probabilistic model of the fretting process is formulated and calibrated using failure data from an existing engine fleet. The resulting calibrated model is used to quantify the influence of inspection on the probability of fracture of an actual military engine disk under real life loading conditions. The results can be applied to quantitative risk predictions of gas turbine engine components subjected to fretting fatigue.


2018 ◽  
Vol 224 ◽  
pp. 01077
Author(s):  
Nicolay V. Nosov

The article proposes a new approach for evaluating roughness of the profile surface of gas turbine engine blade airfoils after vibratory polishing. An optical electronic unit was used to study microgeometry of blade suction and pressure sides: video imagery of the surface was processed using computer methods to obtain the average amplitude of the autocorrelation function variable component. The applied optical electronic method of evaluating microgeometry of compressor/turbine blades allows obtaining fields of surface roughness and tension concentration coefficients as well as analyzing the finish machining technology to a greater depth.


Sign in / Sign up

Export Citation Format

Share Document