The Fatigue Behaviour of a High Strength CrNi-Steel Regarding Fretting Fatigue

Author(s):  
Thomas Christiner ◽  
Johannes Reiser ◽  
István Gódor ◽  
Wilfried Eichlseder ◽  
Franz Trieb ◽  
...  

In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, relative motion of contacting bodies, combined with high loads transmitted via the contact surface lead to fretting fatigue failure. For a reliable prediction of in service performance load type, different damage and failure mechanisms that may be activated during operation have to be known. In this contribution selected results of a currently conducted research project are presented. The aim of this study was to examine the material behaviour of a surface stressed steel. The influence of the fretting regime on fatigue properties has been investigated.

2008 ◽  
Vol 385-387 ◽  
pp. 565-568
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The degradation process in fretting fatigue is due to mechanical and chemical attack between two contacting surfaces, being directly related to wear, corrosion and fatigue. There are many parameters that influence the fretting fatigue phenomenon out of which relative displacement, δ , normal load, n F , and tangential load t F , are the most important and consequently the most studied ones. This paper describes the fretting fatigue phenomenon occurring on a high strength aluminium alloy, Al7175. The aim of this study is to achieve a better understanding of the fretting fatigue behaviour by observing the evolution of the fatigue life of the specimen with the normal load, the tangential load and the relative displacement amplitude.


1966 ◽  
Vol 70 (668) ◽  
pp. 757-763 ◽  
Author(s):  
W. A. Baker ◽  
A. J. Bryant ◽  
R. J. Durham ◽  
R. W. Elkington

As The strength of aluminium alloys is increased, other desirable properties are increasingly sacrificed and, as with other metallic materials, a major difficulty in developing better strong alloys is to assess these other properties in terms which are satisfactory indices of service performance. This difficulty becomes more acute as strength is increased and further progress demands that supplier and user are in the closest possible agreement on methods of assessing the properties involved and on where the line must be drawn between acceptable and unacceptable material behaviour. Discussion of this aspect of strong light alloy development is always opportune and much of what is said in this paper is intended to provoke constructive discussion between supplier and user on this subject.


2019 ◽  
Vol 300 ◽  
pp. 18002
Author(s):  
Yoshinobu Shimamura ◽  
Reo Kasahara ◽  
Hitoshi Ishii ◽  
Keiichiro Tohgo ◽  
Tomoyuki Fujii ◽  
...  

It is well known that fretting fatigue strength is much lower than the fatigue strength of smooth specimens and the fatigue limit disappears. Many studies on fretting fatigue have been reported but most of the studies have not cover fatigue properties in the very high cycle regime more than 107 cycles. In this study, an accelerated fretting fatigue testing method was developed by using an ultrasonic torsional fatigue testing machine with a clamping fretting pad. Fretting fatigue tests of CrMo steel were conducted by using the developed method. Test results showed that fretting fatigue failure occurs in the very high cycle region.


1988 ◽  
Vol 37 (417) ◽  
pp. 643-648 ◽  
Author(s):  
Yoshiharu MUTOH ◽  
Kohichi TANAKA ◽  
Shinzo ITOH

Alloy Digest ◽  
1971 ◽  
Vol 20 (8) ◽  

Abstract COPPER ALLOY No. 510 is a tin bronze containing about 0.25% phosphorus. It combines high strength and toughness with excellent fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on low temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-238. Producer or source: Brass mills.


Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Tungum alloy combines an unusually high strength-to-weight ratio, with ductility, excellent corrosion resistance, and good fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-806. Producer or source: Tungum Ltd.


Alloy Digest ◽  
1998 ◽  
Vol 47 (5) ◽  

Abstract Inland DuraSpring is a high-strength microalloyed spring steel for use in high stress coil springs for automobile and light truck suspension systems. This bar product offers significant improvements in tensile strength, fatigue properties, and fracture toughness compared to conventional spring steels. This datasheet provides information on composition, hardness, and tensile properties as well asfracture toughness and fatigue. Filing Code: SA-496. Producer or source: Ispat Inland Inc.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2092971
Author(s):  
Ying Ba ◽  
Shu Sun

Fiber-reinforced metal matrix composites have mechanical properties highly dependent on directions, possessing high strength and fatigue resistance in fiber longitudinal direction achieved by weak interface bonding. However, the disadvantage of weak interface combination is the reduction of transversal performances. In this article, tensile and fatigue properties of carbon fiber-reinforced 5056 aluminum alloy matrix (Cf/5056Al) composite under the condition of medium-strength interface combination are carried out. The fatigue damage mechanisms of Cf/5056Al composite under tension–tension and tension–compression loads are not the same, but the fatigue life curves are close, which may be the result of the medium-strength interface combination.


Sign in / Sign up

Export Citation Format

Share Document