Investigation of Heat Transfer Performances of Nanofluids Flow through a Circular Minichannel Heat Sink for Cooling of Electronics

2013 ◽  
Vol 832 ◽  
pp. 166-171
Author(s):  
M.R. Sohel ◽  
Saidur Rahman ◽  
Mohd Faizul Mohd Sabri ◽  
M.M. Elias ◽  
S.S. Khaleduzzaman

Nanofluid is the suspension of nanoparticle in a base fluid. In this paper, the heat transfer performances of the nanofluids flow through a circular shaped copper minichannel heat sink are discussed analytically. Al2O3-water, CuO-water, Cu-water and Ag-water nanofluids were used in this analysis to make comparative study of their thermal performances. The hydraulic diameter of the minichannel is 500 μm and total block dimension is 50mm× 50mm× 4mm. The analysis is done at different volume fractions of the nanoparticle ranging from 0.5 vol.% to 4 vol.%. The results showed that the heat transfer performance increases significantly by the increasing of volume fraction of nanoparticle. Ag-water nanofluid shows the highest performance compared to the other nanofluids. So, this nanofluid can be recommended as a coolant flow through a circular minichannel for cooling of electronic heat sink.

Author(s):  
Husam Rajab ◽  
Da Yin ◽  
Hongbin Ma

This paper presents an investigation of the effect of nanofluid on the heat transfer performance in an elliptical micro-pin-fin heat sink including the influence of entropy generation and pin orientation. The orientation angle of pins is decreased with the number of pins in the array with a 90 degree angle for the first pin and a 0 degree angle for the last pin. To study the flow and heat transfer behaviors in a micro-pin-fin heat sink, steady Navier-Stokes and energy equations were discretized using a finite volume approach and were solved iteratively. Deionized (DI) water was used as a base coolant fluid while aluminum oxide (Al2O3) nanoparticles were used in the present study with mean diameters of 41.6 nm. The results showed that (1) changing the angular orientation of pins can cause significant enhancement in heat transfer, (2) a significant enhancement of heat transfer can be attained in the system due to the suspension of Al2O3 nanoparticles in the base fluid in comparison with pure water, (3) enhancement of heat transfer is intensified with increasing volume fraction of nanoparticles and Reynolds and Prandtl numbers, (4) increasing volume fraction of nanoparticles, which is responsible for higher heat transfer performance, leads to a higher pressure drop, (5) using nanofluids as coolant can cause lower heat transfer entropy generation due to their high thermal properties, and (6) with increasing volume fraction and Reynolds and Prandtl numbers, overall entropy generation rate decreases.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 99 ◽  
Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte

This paper studies the fluid flow and heat transfer characteristics of nanofluids as advance coolants for the cooling system of electric motors. Investigations are carried out using numerical analysis for a cooling system with spiral channels. To solve the governing equations, computational fluid dynamics and 3D fluid motion analysis are used. The base fluid is water with a laminar flow. The fluid Reynolds number and turn-number of spiral channels are evaluation parameters. The effect of nanoparticles volume fraction in the base fluid on the heat transfer performance of the cooling system is studied. Increasing the volume fraction of nanoparticles leads to improving the heat transfer performance of the cooling system. On the other hand, a high-volume fraction of the nanofluid increases the pressure drop of the coolant fluid and increases the required pumping power. This paper aims at finding a trade-off between effective parameters by studying both fluid flow and heat transfer characteristics of the nanofluid.


2021 ◽  
pp. 142-142
Author(s):  
Ji Choong ◽  
Kok Yu ◽  
Mohd Abdullah

This paper demonstrates a numerical study on heat transfer characteristics of laminar flow in a double-layered oblique finned heat sink using nanofluids with Al2O3 nanoparticles. Microchannel heat sink with primary channel width of 0.5 mm with aspect ratio of 3 is employed. Instead of having conventional straight fins, oblique fins with narrow secondary channels are used. In this numerical study, single-phase fluid model with conjugate heat transfer is considered. The numerical modelling was first validated with existing data for double-layered conventional microchannel heat sink having water (base fluid) as the working fluid. Numerical investigations on oblique finned microchannel heat sink were then conducted for flow rates ranging from 3?10-7 to 15?10-7 m3/s, equivalent to primary channel inlet velocity in between 0.2 and 1.0 m/s. It was found that double-layered oblique finned configuration yields better heat transfer performance, inferred by the lower overall thermal resistance obtained as compared with that of double-layered conventional heat sink. Employing double-layered oblique finned heat sink, the heat transfer performance could be further enhanced, by using nanoparticles that are added into water-based fluid. It is found that the reduction of overall thermal resistance is proportional to the volume fraction of nanoparticles. Using cross flow double-layered oblique finned configuration, the largest reduction in the overall thermal resistance can reach up to 25%, by using nanofluids with 4% volume fraction of Al2O3 nanoparticles.


Author(s):  
Evrim Kurtoğlu ◽  
Alihan Kaya ◽  
Devrim Gözüaçık ◽  
Havva Funda Yağcı Acar ◽  
Ali Koşar

Ferrofluids are colloidal suspensions, in which the solid phase material is composed of magnetic nanoparticles, while the base fluid can potentially be any fluid. The solid particles are held in suspension by weak intermolecular forces and may be made of materials with different magnetic properties. Magnetite is one of the materials used for its natural ferromagnetic properties. Heat transfer performance of ferrofluids should be carefully analyzed and considered for their potential of their use in wide range of applications. In this study, convective heat transfer experiments were conducted in order to characterize convective heat transfer enhancements with lauric acid coated ironoxide (Fe3O4) nanoparticle based ferrofluids, which have volumetric fractions varying from 0% to ∼5% and average particle diameter of 25 nm, in a hypodermic stainless steel microtube with an inner diameter of 514 μm, an outer diameter of 819 μm, and a heated length of 2.5 cm. Heat fluxes up to 184 W/cm2 were applied to the system at three different flow rates (1 ml/s, 0.62 ml/s, and 0.36 ml/s). A decrease of around 100% in the maximum surface temperature (measured at the exit of the microtube) with the ferrofluid compared to the pure base fluid at significant heat fluxes (>100 W/cm2) was observed. Moreover, the enhancement in heat transfer increased with nanoparticle concentration, and there was no clue for saturation in heat transfer coefficient profiles with increasing volume fraction over the volume fraction range in this study (0–5%). The promising results obtained from the experiments suggest that the use of ferrofluids for heat transfer, drug delivery, and biological applications can be advantageous and a viable alternative as new generation coolants and futuristic drug carriers.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 751-760
Author(s):  
Lei Lei

AbstractTraditional testing algorithm based on pattern matching is impossible to effectively analyze the heat transfer performance of heat pipes filled with different concentrations of nanofluids, so the testing algorithm for heat transfer performance of a nanofluidic heat pipe based on neural network is proposed. Nanofluids are obtained by weighing, preparing, stirring, standing and shaking using dichotomy. Based on this, the heat transfer performance analysis model of the nanofluidic heat pipe based on artificial neural network is constructed, which is applied to the analysis of heat transfer performance of nanofluidic heat pipes to achieve accurate analysis. The experimental results show that the proposed algorithm can effectively analyze the heat transfer performance of heat pipes under different concentrations of nanofluids, and the heat transfer performance of heat pipes is best when the volume fraction of nanofluids is 0.15%.


Author(s):  
Sandesh S. Chougule ◽  
S. K. Sahu

In the present study, the forced convective heat transfer performance of two different nanofluids, namely, Al2O3-water and CNT-water has been studied experimentally in an automobile radiator. Four different concentrations of nanofluid in the range of 0.15–1 vol. % were prepared by the additions nanoparticles into the water as base fluid. The coolant flow rate is varied in the range of 2 l/min–5 l/min. Nanocoolants exhibit enormous change in the heat transfer compared with the pure water. The heat transfer performance of CNT-water nanofluid was found to be better than Al2O3-water nanocoolant. Furthermore, the Nusselt number is found to increase with the increase in the nanoparticle concentration and nanofluid velocity.


Author(s):  
Kazuhisa Yuki ◽  
Masahiro Uemura ◽  
Koichi Suzuki ◽  
Ken-ichi Sunamoto

Two-phase flow loop system using a metal porous heat sink is proposed as a cooling system of the future power electronic devices with a heat load exceeding 300W/cm2. In this paper, as the first step, the heat transfer performance of the porous heat sink is evaluated under high heat flux conditions and the applicability and some engineering issues are discussed. The porous medium, which is fabricated by sintering copper particles, has a functional structure with several sub-channels inside it to enhance phase-change as well as discharge of generated vapor outside the porous medium. This porous heat sink is attached onto a heating chip and removes the heat by evaporating cooling liquid passing through the porous medium against the heat flow. Experiments using 30 kW of heating system show that the heat transfer performance of a copper-particles-sintered porous medium with the sub-channels exceeds 800W/cm2 in both high and low subcooling cases and achieves 300W/cm2 at a wall temperature of 150 °C (Tin = 70 °C) and 130 °C (Tin = 70 °C). These results prove that this porous heat sink is applicable enough for cooling 300 W/cm2 class of power electronic devices.


Sign in / Sign up

Export Citation Format

Share Document