Automated Estimation of Elastic Material Parameters of a Transversely Isotropic Material Using Asymmetric Indentation and Inverse Finite Element Analysis

Author(s):  
Yuan Feng ◽  
Chung-Hao Lee ◽  
Lining Sun ◽  
Ruth J. Okamoto ◽  
Songbai Ji

Anisotropy exists in many soft biological tissues. The most common anisotropy is transverse isotropy, which is typical for fiber-reinforced structures, such as the brain white matter, tendon and muscle. Although many methods have been proposed to determine tissue properties, techniques to characterize transversely isotropic materials remain limited. The goal of this study is to investigate the feasibility of asymmetric indentation coupled with numerical optimization based on inverse finite element (FE) simulation to characterize transversely isotropic soft biological tissues. The proposed approach combining indentation and optimization may provide a useful general framework to characterize a variety of fiber-reinforced soft tissues in the future.

Author(s):  
Leslee W. Brown ◽  
Lorenzo M. Smith

A transversely isotropic fiber reinforced elastomer’s hyperelasticity is characterized using a series of constitutive tests (uniaxial tension, uniaxial compression, simple shear, and constrained compression test). A suitable transversely isotropic hyperelastic invariant based strain energy function is proposed and methods for determining the material coefficients are shown. This material model is implemented in a finite element analysis by creating a user subroutine for a commercial finite element code and then used to analyze the material tests. A useful set of constitutive material data for multiple modes of deformation is given. The proposed strain energy function fits the experimental data reasonably well over the strain region of interest. Finite element analysis of the material tests reveals further insight into the materials constitutive nature. The proposed strain energy function is suitable for finite element use by the practicing engineer for small to moderate strains. The necessary material coefficients can be determined from a few simple laboratory tests.


2015 ◽  
Vol 76 (7) ◽  
Author(s):  
Farshid Fathi ◽  
Shahrokh Shahi ◽  
Soheil Mohammadi

Extensive research has been performed in the past decades to study the behavior of soft biological tissues in order to reduce the need for practical experiments. The applicability of these researches, particularly for skin, ligament, muscles and the heart, brings up its importance in various biological science and technology disciplines such as surgery and medicine. Softness and large deformation govern the behavior of soft materials and prohibit the use of small strains solutions in finite element method.In this work, the focus is set on a strain energy function which has the advantage of accurately representing the behavior of a variety of soft tissues with only a few parameters in a finite element approach. The numerical results are verified with a set of tensile experiments to demonstrate the performance of the proposed model. The parameters include the matrix and collagen bundles and their orientation. Different cases are analyzed and discussed for better prediction of different soft tissue responses.  


2021 ◽  
Vol 5 (7) ◽  
pp. 170
Author(s):  
Pablo Castillo Ruano ◽  
Alfred Strauss

In recent years, interest in low-cost seismic isolation systems has increased. The replacement of the steel reinforcement in conventional elastomeric bearings for a carbon fiber reinforcement is a possible solution and has garnered increasing attention. To investigate the response of fiber-reinforced elastomeric bearings (FREBs) under seismic loads, it is fundamental to understand its mechanical behavior under combined vertical and horizontal loads. An experimental investigation of the components presents complexities due to the high loads and displacements tested. The use of a finite element analysis can save time and resources by avoiding partially expensive experimental campaigns and by extending the number of geometries and topologies to be analyzed. In this work, a numerical model for carbon fiber-reinforced bearings is implemented, calibrated, and validated and a set of virtual experiments is designed to investigate the behavior of the bearings under combined compressive and lateral loading. Special focus is paid to detailed modeling of the constituent materials. The elastomeric matrix is modeled using a phenomenological rheological model based on the hyperelastic formulation developed by Yeoh and nonlinear viscoelasticity. The model aims to account for the hysteretic nonlinear hyper-viscoelastic behavior using a rheological formulation that takes into consideration hyperelasticity and nonlinear viscoelasticity and is calibrated using a series of experiments, including uniaxial tension tests, planar tests, and relaxation tests. Special interest is paid to capturing the energy dissipated in the unbonded fiber-reinforced elastomeric bearing in an accurate manner. The agreement between the numerical results and the experimental data is assessed, and the influence of parameters such as shape factor, aspect ratio, vertical pressure, and fiber reinforcement orientation on stress distribution in the bearings as well as in the mechanical properties is discussed.


2017 ◽  
Vol 52 (14) ◽  
pp. 1947-1958 ◽  
Author(s):  
Sergio González ◽  
Gianluca Laera ◽  
Sotiris Koussios ◽  
Jaime Domínguez ◽  
Fernando A Lasagni

The simulation of long life behavior and environmental aging effects on composite materials are subjects of investigation for future aerospace applications (i.e. supersonic commercial aircrafts). Temperature variation in addition to matrix oxidation involves material degradation and loss of mechanical properties. Crack initiation and growth is the main damage mechanism. In this paper, an extended finite element analysis is proposed to simulate damage on carbon fiber reinforced polymer as a consequence of thermal fatigue between −50℃ and 150℃ under atmospheres with different oxygen content. The interphase effect on the degradation process is analyzed at a microscale level. Finally, results are correlated with the experimental data in terms of material stiffness and, hence, the most suitable model parameters are selected.


2008 ◽  
Vol 76 (1) ◽  
Author(s):  
E. Shmoylova ◽  
A. Dorfmann

In this paper we investigate the response of fiber-reinforced cylindrical membranes subject to axisymmetric deformations. The membrane is considered as an incompressible material, and the phenomenon of wrinkling is taken into account by means of the relaxed energy function. Two cases are considered: transversely isotropic membranes, characterized by one family of fibers oriented in one direction, and orthotropic membranes, characterized by two family of fibers oriented in orthogonal directions. The strain-energy function is considered as the sum of two terms: The first term is associated with the isotropic properties of the base material, and the second term is used to introduce transverse isotropy or orthotropy in the mechanical response. We determine the mechanical response of the membrane as a function of fiber orientations for given boundary conditions. The objective is to find possible fiber orientations that make the membrane as stiff as possible for the given boundary conditions. Specifically, it is shown that for transversely isotropic membranes a unique fiber orientation exists, which does not affect the mechanical response, i.e., the overall behavior is identical to a nonreinforced membrane.


Sign in / Sign up

Export Citation Format

Share Document