Hydrogen Production From Renewables: Marine and Hydrokinetic Energy Systems

2017 ◽  
Author(s):  
Gagee Raut ◽  
Navid Goudarzi

Hydrogen can be produced from various primary resources by using different processes. The full benefits of hydrogen production can be obtained when it is produced from renewable energy resources. Among these emerging renewable energy resources, marine and hydrokinetic (MHK) energy systems lower variability in the energy production. Also, more than 50% of the total US population resides near water bodies. In this paper, a brief review of renewable energy-based hydrogen production systems is provided, the emission level of both conventional and renewable energy sources for producing the same amount of hydrogen are compared using GREET model, and research needs for further MHK-based hydrogen production systems are discussed. The results showed the significant emission reductions obtained from renewable-based hydrogen production systems. Moreover, the study showed the potential of producing the same amount of hydrogen with less resource quantity of wave energy compared to that from other renewables such as solar energy.

Author(s):  
M. A. Ancona ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
B. Di Pietra

In the next years energy grids are expected to become increasingly complex, due to the integration between traditional generators (operating with fossil fuels, especially natural gas), renewable energy production systems and storage devices. Furthermore, the increase of installed distributed generation systems is posing new issues for the existing grids. The integration involves both electric grids and thermal networks, such as district heating networks. In this scenario, it is fundamental to optimize the production mix and the operation of each system, in order to maximize the renewable energies exploitation, minimize the economic costs (in particular the fossil fuel consumption) and the environmental impact. The aim of this paper is the analysis of different solutions in terms of energy generation mix, in order to define the optimal configuration for a given network. With this purpose, in this study a real district heating network served by a combined heat and power unit and four boilers has been considered. The current mode of operation of the selected network has been simulated, in order to individuate eventual criticism and/or improvement possibility. On the basis of the obtained results, several scenarios have been developed by considering the addition of thermal or electric energy production systems from renewable energy sources and/or heat pumps. For a given scenario, a whole year of operation has been simulated with an in-house developed software, called EGO (Energy Grid Optimizer), based on genetic algorithms and able to define the load distribution of a number of energy systems operating into an energy grid, with the aim to minimize the total cost of the energy production. Further considered constraints have been the avoiding of thermal dissipations and the minimization of the electric energy sale to the national grid (in order to increase the grid stability). The carried out analysis has allowed to evaluate the yearly fuel consumption, the yearly electric energy sold to the network and the yearly electric energy purchased from the network, for each of the developed configurations. In this study the obtained results have been discussed in order to compare the proposed scenarios and to define an optimal solution, which enables to reduce the yearly operation costs of the production plant.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1779
Author(s):  
Syed Rahman ◽  
Irfan Khan ◽  
Khaliqur Rahman ◽  
Sattam Al Otaibi ◽  
Hend I. Alkhammash ◽  
...  

This paper presents a novel, scalable, and modular multiport power electronic topology for the integration of multiple resources. This converter is not only scalable in terms of the integration of multiple renewable energy resources (RES) and storage devices (SDs) but is also scalable in terms of output ports. Multiple dc outputs of a converter are designed to serve as input to the stacking modules (SMs) of the modular multilevel converter (MMC). The proposed multiport converter is bidirectional in nature and superior in terms of functionality in a way that a modular universal converter is responsible for the integration of multiple RES/SDs and regulates multiple dc output ports for SMs of MMC. All input ports can be easily integrated (and controlled), and output ports also can be controlled independently in response to any load variations. An isolated active half-bridge converter with multiple secondaries acts as a central hub for power processing with multiple renewable energy resources that are integrated at the primary side. To verify the proposed converter, a detailed design of the converter-based system is presented along with the proposed control algorithm for managing power on the individual component level. Additionally, different modes of power management (emulating the availability/variability of renewable energy sources (RES)) are exhibited and analyzed here. Finally, detailed simulation results are presented in detail for the validation of the proposed concepts and design process.


2021 ◽  
Vol 26 (2) ◽  
pp. 2434-2440
Author(s):  
CRISTINA BACĂU ◽  
◽  
NICOLETA MATEOC-SÎRB ◽  
RAMONA CIOLAC ◽  
TEODOR MATEOC ◽  
...  

The use of renewable energy resources is gaining more and more ground, thanks to the continuous increase in the price of fossil energy and the decrease in stocks, and the management of waste from nuclear energy production, respectively. The implementation of an energy strategy to harness the potential of renewable energy sources (RES) is part of the coordinates of Romania’s medium – and long-term energy development and provides the appropriate framework for the making of decisions on energy alternatives and the inclusion in the Community acquis in the field. In this respect, a study on the biomass potential of Timiş County and on the possibilities of producing unconventional energy from biomass has been carried out. The study is based on research, data collection from the literature, as well as from official documents or official websites, the processing and interpretation of the data and their quantitative and qualitative analysis. It was concluded that biomass is a promising renewable energy source for Romania, both in terms of potential and in terms of usability.


Author(s):  
Baba Dzhabrailovich Babaev ◽  
Vladimir Panchenko ◽  
Valeriy Vladimirovich Kharchenko

The main objective of the work is to develop principles for the formation of the optimal composition of the energy complex from all the given power plants based on renewable energy sources for an autonomous consumer, taking into account the variable energy loads of the consumer, changing climatic conditions and the possibility of using local fuel and energy resources. As a result of solving this optimization problem, in addition to the optimal configuration of the power complex, it is also necessary to solve the problem of optimizing the joint operation of different types of power plants from the selected optimal configuration, that is, it is necessary to determine the optimal modes of operation of power plants and the optimal share of their participation in providing consumers at every moment in time. A numerical method for analyzing and optimizing the parameters and operating mode of the energy complex with the most accurate consideration of the schedule of changes in consumer load and software that automates the solution of this optimization problem are also presented.


Author(s):  
NGO TUYET

The article presents the main steps of model of forming regional cluster of renewable energy sources in Vietnam, including method of evaluating the possibility of creating regional cluster of renewable energy resources in Vietnam. The approbation of model in region Ninh Thuan – Binh Thuan.


2019 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Rita Bužinskienė

Paper is characterized by scientific novelty as it involves a very scarce research problem in Lithuanian‘s energy sector, assessing the impact of renewable energy resources on the energy economy. Renewable energy sources have a multiplier effect in spurring the economy and the development of not only the energy sector but also all the supporting activities related to such industry. The impact of the development of renewable energy is one of the factors that develop the quality of technology innovation development. This study includes the impact of renewable energy on the energy economy, using multiple linear regression models. The results of the study have shown that renewable energy resources: wind, sun, water, geothermal and biomass can not always be used together because they compete with each other and therefore reduce the efficiency of the energy economy. In this context, three combinations of renewable energy resources have been developed, which have been adapted to assess the impact of the energy economy on energy productivity and energy intensity. It has been found that the combination of resources of the second model (M2) RE is significant for the efficiency of the energy economy.Keywords: Renewable energy resources; Energy economy; Impact of efficiency


2020 ◽  
Vol 3 (1) ◽  
pp. 407-419
Author(s):  
Ewa W. Maruszewska ◽  
Kęstutis Navickas ◽  
Renata Navickienė

AbstractAs Poland is considered a coal country, renewable energy resources still do not have a significant share in energy production. Further, 14% contribution of renewable energy to total primary energy production in 2020 is endangered. Thus, in order to speed up with renewable energy sources new actions should be stimulated. The aim of the article is to describe the most popular renewable energy installations in Poland and further to search for a case study indicating that an investment in renewable sources is profitable without financial support. The results indicate that prior literature does not present any analysis of profitable renewable energy investment without financial support. It states the need for regulators to implement additional financial support not only on the European Union level but also on the national one.


2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


2019 ◽  
Vol 3 (1) ◽  
pp. 52
Author(s):  
Hala Abdelmoez Mohamed

As the Egyptian population is increasing at a huge rate, the yearly housing demand is increasing in an equivalent rate. In addition, the whole world is suffering from an energy crises caused by the rapidly increasing consumption of world’s traditional energy resources, so the obvious solution is to go green, and depend much more on renewable energy resources. According to the statistical data available in Egyptian governmental authorities, the accumulated housing demand till 2014 was about 2,400,000 units. On the other hand, the yearly housing supply from private and public sectors is about 150,000 to 200,000 unit, Egyptian authorities declared that at summer 2010 air-conditioning devices increased to reach 3.000.000 ( three million) devices all over Egypt, mostly working from early mornings till 2 am next day to adjust temperatures that reach up to (45C) and more outside buildings to reach (25 C) or less inside. This behavior increased electricity consumption rapidly. Consequently, the electricity consumption rate in Egypt had increased by 13% more than 2009, which exceeds the maximum capacity power of the high dam by 7% to 8%, ministry of electricity announcements declared that to fill that gab we need 3000 megawatts at peak hours which costs the electricity sector up to 16.000.000.000 l.E. Accordingly, a new architectural design concept is proposed (Zero-Energy Housing Unit) to rely on the surrounding environmental conditions and new Green Architecture Techniques in order to provide human comfort based on renewable energy sources, provided that the common current governmental energy sources will be a backup system for the meanwhile.


Sign in / Sign up

Export Citation Format

Share Document