Renewable Energy Systems Integration for Efficiency Improvement of a CHP Unit

Author(s):  
M. A. Ancona ◽  
L. Branchini ◽  
A. De Pascale ◽  
F. Melino ◽  
B. Di Pietra

In the next years energy grids are expected to become increasingly complex, due to the integration between traditional generators (operating with fossil fuels, especially natural gas), renewable energy production systems and storage devices. Furthermore, the increase of installed distributed generation systems is posing new issues for the existing grids. The integration involves both electric grids and thermal networks, such as district heating networks. In this scenario, it is fundamental to optimize the production mix and the operation of each system, in order to maximize the renewable energies exploitation, minimize the economic costs (in particular the fossil fuel consumption) and the environmental impact. The aim of this paper is the analysis of different solutions in terms of energy generation mix, in order to define the optimal configuration for a given network. With this purpose, in this study a real district heating network served by a combined heat and power unit and four boilers has been considered. The current mode of operation of the selected network has been simulated, in order to individuate eventual criticism and/or improvement possibility. On the basis of the obtained results, several scenarios have been developed by considering the addition of thermal or electric energy production systems from renewable energy sources and/or heat pumps. For a given scenario, a whole year of operation has been simulated with an in-house developed software, called EGO (Energy Grid Optimizer), based on genetic algorithms and able to define the load distribution of a number of energy systems operating into an energy grid, with the aim to minimize the total cost of the energy production. Further considered constraints have been the avoiding of thermal dissipations and the minimization of the electric energy sale to the national grid (in order to increase the grid stability). The carried out analysis has allowed to evaluate the yearly fuel consumption, the yearly electric energy sold to the network and the yearly electric energy purchased from the network, for each of the developed configurations. In this study the obtained results have been discussed in order to compare the proposed scenarios and to define an optimal solution, which enables to reduce the yearly operation costs of the production plant.

2017 ◽  
Author(s):  
Gagee Raut ◽  
Navid Goudarzi

Hydrogen can be produced from various primary resources by using different processes. The full benefits of hydrogen production can be obtained when it is produced from renewable energy resources. Among these emerging renewable energy resources, marine and hydrokinetic (MHK) energy systems lower variability in the energy production. Also, more than 50% of the total US population resides near water bodies. In this paper, a brief review of renewable energy-based hydrogen production systems is provided, the emission level of both conventional and renewable energy sources for producing the same amount of hydrogen are compared using GREET model, and research needs for further MHK-based hydrogen production systems are discussed. The results showed the significant emission reductions obtained from renewable-based hydrogen production systems. Moreover, the study showed the potential of producing the same amount of hydrogen with less resource quantity of wave energy compared to that from other renewables such as solar energy.


2021 ◽  
Vol XXIII (4) ◽  
pp. 64-69
Author(s):  
Goran Rimac

Until recently, the prevailing idea was that for the functioning of the energy system it is necessary to be composed of large plants and for energy to move from the centre of production to cities and places of consumption. With the advent of decentralized energy production systems and new technologies for their use, the original model is changing more and more. EU Directive 2018/2001 on the promotion of the use of renewable energy sources (RES) designates “prosumers”, i.e. at the same time both producers and consumers of renewable energy, as well as RES communities, while EU Directive 2019/944 introduced the term “citizen energy communities”, i.e. civil energy communities, provided that this Directive, in addition to the distributive production of electricity from RES, also includes electricity from other sources. EU member states are obliged to adopt their own regulations regarding the implementation of the directives, and after that the appropriate incentive measures. The Energy Communities initiative offers citizens new opportunities in terms of active involvement in energy issues. As they are decentralized RES-based projects, they promote the practice of sustainable energy production and consumption, as well as energy storage and exchange within the community. Traditionally passive consumer becomes an energy “prosumer”, a co-owner of a RES plant and a member of the energy community. There are thousands of so-called RES cooperatives in Europe, which are the most common organizational form of energy communities and can play an important role in the process of decentralization of the energy system. The transition to decentralized energy production has many advantages, namely: the use of local energy sources, increased security of local energy supply, shorter transport distances and reduced losses in energy transmission, encouraging community development and creating local jobs. The purpose of this paper is to bring closer to the general public in Serbia the concept of energy communities, what they are and what their role is, with most of the work dealing with energy communities in the EU.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2615 ◽  
Author(s):  
Guido Marseglia ◽  
Carlo Maria Medaglia ◽  
Alessandro Petrozzi ◽  
Andrea Nicolini ◽  
Franco Cotana ◽  
...  

Renewable energy sources can help the countries to achieve some of the Sustainable Development Goals (SDGs) provided from the recent 2030 Agenda, allowing for clean, secure, reliable and affordable energy. Biomass technology is a relevant renewable energy to contribute to reach a clean and affordable energy production system with important emissions reduction of greenhouse gases (GHG). An innovative technological application of biomass energy consisting of a burner coupled with an external fired gas turbine (EFGT) has been developed for the production of electricity. This paper shows the results of the plant modelling by Aspen Plus environment and preliminary experimental tests; the validation of the proposed model allows for the main parameters to be defined that regulate the energy production plant supplied by woodchips.


2021 ◽  
Vol 11 (6) ◽  
pp. 2770
Author(s):  
Anna Stoppato ◽  
Alberto Benato ◽  
Francesco De Vanna

The aim of this study is to assess the environmental impact of storage systems integrated with energy plants powered by renewable sources. Stationary storage systems proved to be a valid solution for regulating networks, supporting frequency, and managing peaks in electricity supply and demand. Recently, their coupling with renewable energy sources has been considered a strategic means of exploiting their high potential since it permits them to overcome their intrinsic uncertainty. Therefore, the storage systems integration with distributed generation can improve the performance of the networks and decrease the costs associated with energy production. However, a question remains regarding the overall environmental sustainability of the final energy production. Focusing on electrochemical accumulators, the problems mainly concern the use of heavy metals and/or impacting chemical components of storage at the center of environmental hazard debates. In this paper, an environmental assessment from a life-cycle perspective of the hybrid energy systems powered by fossil and renewable sources located on two non-interconnected minor islands is presented. Existing configurations are compared with new ones obtained with the addition of batteries for the exploitation of renewable energy. The results show that, for batteries, the assembly phase, including raw material extraction, transport, and assembly, accounts for about 40% of the total, while the remaining part is related to end-of-life processes. The reuse and recycling of the materials have a positive effect on overall impacts. The results also show that the overall impact is strongly related to the actual energy mix of the place where batteries are installed, even if it is usually lower than that of the solution without the batteries. The importance of a proper definition of the functional unit in the analysis is also emphasized in this work.


2019 ◽  
Vol 5 (3) ◽  
pp. 11 ◽  
Author(s):  
Mahammad N. Nuriyev ◽  
Jeyhun Mammadov ◽  
Joshgun Mammadov

Steady increase in renewable energy production and supply allows gradually substitute environmentally harmful traditional energy systems. Developers of the renewable projects encounter various types of risks, inherent to these projects, and all these risks should be studied in advance and ways of their mitigation developed. In the paper risks related to the development of renewables in Azerbaijan are analyzed and assessed based on experts’ opinion study. Typical for the projects on renewable energy, nine risks and risk components likelihood and their impacts have been evaluated by experts and, based on their opinion, risk levels are calculated, and a risk profile is constructed. In general, risks are sufficiently different. However, energy policy-related, grid access and financial risks are significantly influential and require more attention.


Author(s):  
A. T. D. Perera

The importance of integrating renewable energy sources into standalone energy systems is highlighted in recent literature. Maintaining energy efficiency is challenging in designing such hybrid energy systems (HES) due to seasonal variation of renewable energy potential. This study evaluates the limitations in minimizing the losses in renewable energy generated mainly due to energy storage limitations and minimizing fuel consumption of the internal combustion generator (ICG). A standalone hybrid energy system with Solar PV (SPV), wind, battery bank and an ICG is modeled and optimized in this work. Levelized Energy Cost (LEC), Waste of Renewable Energy (WRE) and Fuel Consumption (FC) are taken as objective functions. Results highlight the importance of considering WRE as an objective function which increase the mix of energy sources that can help to increase the reliability of the system.


Author(s):  
Cristina Stănişteanu

Abstract In line with the Renewable Energy Directive (2009/28/EC), EU member states have intensified their efforts to increase the share of renewable energy in energy supply. Renewable energy sources will be a challenge for the current district heating concept, requiring system flexibility both in terms of heat supply and heat consumption. Besides, they are hard to accommodate in areas with high population density, as it is the case with many towns and cities. The municipalities will have to identify suitable locations, which in turn will lead to distributed heat supply. The requirement of the 2010/31/EU (EPBD) Directive that all new buildings will have to be nearzero energy buildings will result in buildings fitted with solar collectors; some buildings will produce more energy than they can use. To accommodate all these challenges, the scientists have come up with the new concept of Thermal Smart Grids. The renewable energy will then be shared with the whole district heating grid, and the network will also be used for heat storage when consumption is lower than production. Smart thermal grids are expected to be an integrated part of the future smart energy systems, integrated electricity, gas and thermal grids.


Sign in / Sign up

Export Citation Format

Share Document