Design and Development of an Unmanned Underwater Vehicle (UUV) in the Form of a Cuttlefish

Author(s):  
Susheelkumar Cherangara Subramanian ◽  
Thao Le ◽  
Jason Olson ◽  
Sandesh Bhat ◽  
Sangram Redkar

Current methods of unmanned underwater locomotion do not meet stealth, robustness and efficiency. This work discuses about designing a Bioinspired UUV or Unmanned Underwater Vehicle that uses an undulating fin approximating to that of a cuttlefish fin locomotion. This propulsion method has higher maneuverability and ability to navigate while leaving its surroundings relatively undisturbed as compared to other propeller based systems. Mathematical models and control algorithms describing the complicated locomotion have been developed, and a simulation model is used to verify the theoretical results. This design of UUV can be utilized for underwater data collection and military applications without hampering the underwater wildlife.

2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540014 ◽  
Author(s):  
Seung-Woo Byun ◽  
Donghee Kim ◽  
Hyeung-Sik Choi ◽  
Joon-Young Kim

This paper describes the mathematical modeling and control algorithms of an unmanned underwater vehicle (UUV) named Minekiller. This UUV has two longitudinal thrusters, one vertical thruster, and an internal mass moving system, which can control the pitch rate. The UUV is equipped with a movable mass for pitch control. It is different from other common UUVs, in that it can maintain a static pitch angle. The UUV's 6-DOF (Degrees of Freedom) dynamics model is derived from the hydrodynamic forces and moments acting on it. We applied these hydrodynamic coefficients to dynamic modeling for numerical simulations by MATLAB/SIMULINK©. To compare the performance in various cases, we used a PID controller for depth and heading control. Also, the navigation controller can analyze the way-point tracking performance. These simulation results show the performance of the control algorithms and maneuvering performance of the underwater vehicle.


2020 ◽  
Vol 17 (5) ◽  
pp. 172988142093383
Author(s):  
Xue Du ◽  
Dong Chen ◽  
Zebo Yan

To satisfy the requirements of position control accuracy and allow unmanned underwater vehicle to maintain in the target zone with energy consumption as little as possible, this article proposes a flexible dynamic positioning strategy and control method, so as to extend the operating time of unmanned underwater vehicle dynamic positioning. Taking the distance between unmanned underwater vehicle and target point as the judgment condition for control method switching, this article delimits the working zone of different control levels for unmanned underwater vehicle and designs corresponding dynamic control methods for different working conditions. When unmanned underwater vehicle is far away from the target point, cuckoo search optimization method is proposed to plan the optimal motion scheme of energy consumption for the process of unmanned underwater vehicle reaching the target point. When unmanned underwater vehicle is close to the target positioning point, a flexible model predictive control method is proposed to reduce the energy consumption of unmanned underwater vehicle in the process of dynamic position control. The simulation case is designed to verify the flexible dynamic control capability of monomer unmanned underwater vehicle. The experimental results show that the strategy and control method proposed in this article, compared with the traditional proportion integration differentiation control method, could obtain the same control effect and reduce energy consumption, to achieve the purpose of prolonging the unmanned underwater vehicle operating time.


2016 ◽  
Author(s):  
Rachel A Taylor ◽  
Erin Mordecai ◽  
Christopher A Gilligan ◽  
Jason R Rohr ◽  
Leah R Johnson

Huanglongbing, or citrus greening, is a global citrus disease occurring in almost all citrus growing regions and causing substantial economic burdens to individual growers, citrus industries and governments. Successful management strategies to reduce disease burden are desperately needed but with so many possible interventions and combinations thereof, it is difficult to know which are worthwhile or cost-effective. We review how mathematical models have yielded useful insights into controlling disease spread for other vector-borne plant diseases, and the small number of mathematical models of Huanglongbing. We adapt a malaria model to Huanglongbing, by including temperature-dependent psyllid traits and economic costs, to show how models can be used to highlight which parameters require more data collection or which should be targeted for intervention. We analyze the most common intervention strategy, insecticide spraying, to determine the most cost-effective spraying strategy. We found that fecundity and feeding rate of the vector require more experimental data collection, for wider temperatures ranges. The best strategy for insecticide intervention was to spray for more days rather than pay extra for a more efficient spray. We conclude that mathematical models are able to provide useful recommendations for managing Huanglongbing spread.


Sign in / Sign up

Export Citation Format

Share Document