The Residue Harmonic Balance Method for Duffing-Van Der Pol Oscillator with Fractional Derivative

2013 ◽  
Vol 774-776 ◽  
pp. 103-106
Author(s):  
Xin Xue ◽  
Lian Zhong Li ◽  
Dan Sun

Duffing-van der Pol oscillator with fractional derivative was constructed in this paper. The solution procedure was proposed with the residue harmonic balance method. The effect of different fractional orders on resonance responses of the system in steady state were analyzed for an example without parameters. The approximate solutions were contrasted with numerical solutions. The results show that the residue harmonic balance method to Duffing-van der Pol differential equation with fractional derivative is very valid.

2013 ◽  
Vol 23 (11) ◽  
pp. 1350177 ◽  
Author(s):  
A. Y. T. LEUNG ◽  
H. X. YANG ◽  
P. ZHU

A generalized Duffing–van der Pol oscillator with nonlinear fractional order damping is introduced and investigated by the residue harmonic homotopy. The cubic displacement involved in fractional operator is used to describe the higher-order viscoelastic behavior of materials and of aerodynamic damping. The residue harmonic balance method is employed to analytically generate higher-order approximations for the steady state responses of an autonomous system. Nonlinear dynamic behaviors of the harmonically forced oscillator are further explored by the harmonic balance method along with the polynomial homotopy continuation technique. A parametric investigation is carried out to analyze the effects of fractional order of damping and the effect of the magnitude of imposed excitation on the system using amplitude-frequency curves. Jump avoidance conditions are addressed. Neimark bifurcations are captured to delineate regions of instability. The existence of even harmonics in the Fourier expansions implies symmetry-breaking bifurcation in certain combinations of system parameters. Numerical simulations are given by comparing with analytical solutions for validation purpose. We find that all Neimark bifurcation points in the response diagram always exist along a straight line.


Author(s):  
Mrinalgouda Patil ◽  
Anubhav Datta

A time-parallel algorithm is developed for large-scale three-dimensional rotor dynamic analysis. A modified harmonic balance method with a scalable skyline solver forms the kernel of this algorithm. The algorithm is equipped with a solution procedure suitable for large-scale structures that have lightly damped modes near resonance. The algorithm is integrated in X3D, implemented on a hybrid shared and distributed memory architecture, and demonstrated on a three-dimensional structural model of a UH-60A-like fully articulated rotor. Flight-test data from UH-60A Airloads Program transition flight C8513 are used for validation. The key conclusion is that the new solver converges to the time marching solution more than 50 times faster and achieves a performance greater than 1 teraFLOPS. The significance of this conclusion is that the principal barrier of computational time for trim solution using high-fidelity three-dimensional structures can be overcome with the scalable harmonic balance method demonstrated in this paper.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Y. H. Qian ◽  
J. L. Pan ◽  
S. P. Chen ◽  
M. H. Yao

The exact solutions of the nonlinear vibration systems are extremely complicated to be received, so it is crucial to analyze their approximate solutions. This paper employs the spreading residue harmonic balance method (SRHBM) to derive analytical approximate solutions for the fifth-order nonlinear problem, which corresponds to the strongly nonlinear vibration of an elastically restrained beam with a lumped mass. When the SRHBM is used, the residual terms are added to improve the accuracy of approximate solutions. Illustrative examples are provided along with verifying the accuracy of the present method and are compared with the HAM solutions, the EBM solutions, and exact solutions in tables. At the same time, the phase diagrams and time history curves are drawn by the mathematical software. Through analysis and discussion, the results obtained here demonstrate that the SRHBM is an effective and robust technique for nonlinear dynamical systems. In addition, the SRHBM can be widely applied to a variety of nonlinear dynamic systems.


Author(s):  
Albert C. J. Luo ◽  
Jianzhe Huang

The analytical solutions of the period-1 motions for a hardening Duffing oscillator are presented through the generalized harmonic balance method. The conditions of stability and bifurcation of the approximate solutions in the oscillator are discussed. Numerical simulations for period-1 motions for the damped Duffing oscillator are carried out.


2013 ◽  
Vol 32 ◽  
pp. 1-14
Author(s):  
M Saifur Rahman ◽  
M Majedur Rahman ◽  
M Sajedur Rahaman ◽  
M Shamsul Alam

A modified harmonic balance method is employed to determine the second approximate solutions to a coupled nonlinear differential equation near the limit cycle. The solution shows a good agreement with the numerical solution. DOI: http://dx.doi.org/10.3329/ganit.v32i0.13640 GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 32 (2012) 1 – 14


2004 ◽  
Vol 26 (3) ◽  
pp. 157-166
Author(s):  
Nguyen Van Khang ◽  
Thai Manh Cau

In this paper the incremental harmonic balance method is used to calculate periodic vibrations of nonlinear autonomous multip-degree-of-freedom systems. According to Floquet theory, the stability of a periodic solution is checked by evaluating the eigenvalues of the monodromy matrix. Using the programme MAPLE, the authors have studied the periodic vibrations of the system multi-degree van der Pol form.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Hai-Tao Zhu ◽  
Siu-Siu Guo

This paper presents a solution procedure to investigate the periodic response of a Duffing oscillator under combined harmonic and random excitations. The solution procedure consists of an implicit harmonic balance method and a Gaussian closure method. The implicit harmonic balance method, previously developed for the case of harmonic excitation, is extended to the present case of combined harmonic and random excitations with the help of the Gaussian closure method. The amplitudes of the periodic response and the steady variances can be automatically found by the proposed solution procedure. First, the response process is separated into the mean part and the random process part. Then the Gaussian closure method is adopted to reformulate the original equation into two coupled differential equations. One is a deterministic equation about the mean part and the other is a stochastic equivalent linear equation. In terms of these two coupled equations, the implicit harmonic balance method is used to obtain a set of nonlinear algebraic equations relating to amplitudes, frequency, and variance. The resulting equations are not explicitly determined and they can be implicitly solved by nonlinear equation routines available in most mathematical libraries. Three illustrative examples are further investigated to show the effectiveness of the proposed solution procedure. Furthermore, the proposed solution procedure is particularly convenient for programming and it can be extended to obtain the periodic solutions of the response of multi degrees-of-freedom systems.


Sign in / Sign up

Export Citation Format

Share Document