Full Frontal Impact Comparison of Steel and Carbon Fiber Composite Front Bumper Crush Can (FBCC) Structures

Author(s):  
Y. Dixit ◽  
P. Begeman ◽  
G. Newaz ◽  
D. Board ◽  
Y. Chen ◽  
...  

This study compares the deformation characteristics of steel and carbon fiber composite (CFC) front bumper crush can (FBCC) assemblies when subjected to a full-overlap frontal impact into a rigid wall. Both the steel and composite bumper tests were conducted using a sled-on-sled testing method. Several high-speed cameras (HSCs) and accelerometers were used to gather kinematics data. The applied forces were measured using a load cell wall. For each test, the collective set of data was filtered, sorted, and analyzed to compare the performance of the steel and CFC bumpers. Similarities in Acceleration-Time plots suggested resemblance in the deformation patterns for both types of bumper systems. The difference observed in the velocity and displacement time-histories was because of the brittle nature of the composite material. The velocity-time history of the CFC FBCC had two distinct patterns, events suggesting adhesive bond failure between the bumper beam and the crush cans, which was validated through video tracking. Post-impact photographs showed a clear difference between the material behavior of composite and steel bumpers when subjected to high-velocity impact. The steel bumper beam was bent uniformly with intact, equally crushed crush cans. The composite beam was cracked in the middle and was detached from the crush cans.

Author(s):  
Y. Dixit ◽  
P. Begeman ◽  
G. S. Dhaliwal ◽  
G. Newaz ◽  
D. Board ◽  
...  

This research article presents the crashworthiness response of carbon fiber composite front bumper crush can (FBCC) assembly subjected to 40% offset frontal impact loading. Automobile manufacturers continue to strive for overall vehicle weight reduction while maintaining or enhancing safety performance. Therefore, the physical testing of lightweight materials becomes extremely important under a crash scenario in order to apply them to automotive structures to reduce the overall weight of the vehicle. In this study carbon fiber/epoxy lightweight composite material is chosen to develop frontal bumper beam crush can assemblies. Due to lack of available studies on carbon fiber composite FBCCs assemblies under frontal offset crash scenario, a new component-level experimental study is conducted in order to develop data that will provide assistance to CAE models for better correlation. A sled-on-sled testing method was utilized to perform tests in this study. 40 % offset frontal tests on FBCC structures were conducted by utilizing three high-speed cameras (HSCs), several accelerometers and load wall. Impact histories i.e. crash pulse, force-time history, force-displacement, impact characteristics and deformation patterns from all FBCC tests were consistent. The standard deviation and coefficient of variance for the energy absorbed were very low suggesting the repeatability of the 40% offset tests. Excellent correlation was achieved between video tracking and accelerometers results for time histories of displacement and velocity. Post-impact photographs showed the progressive crushing of composite crush cans, bumper beam/crush can adhesive joint failure located on unimpacted side and breakage of the bumper beam due to the production of shear stresses as it is stretched due to its curvature after hitting the sled.


Author(s):  
Y. Dixit ◽  
P. Begeman ◽  
G. S. Dhaliwal ◽  
G. Newaz ◽  
D. Board ◽  
...  

This research study highlights the testing method and relevant results for assessing impact performance of a carbon fiber composite front bumper crush can (FBCC) assembly subjected to full frontal crash loading. It becomes extremely important to study the behavior of lightweight composite components under a crash scenario in order to apply them to automotive structures to reduce the overall weight of the vehicle. Computer-aided engineering (CAE) models are extremely important tools to virtually validate the physical testing by assessing the performances of these structures. Due to lack of available studies on carbon fiber composite FBCCs assemblies under the frontal crash scenario, a new component-level test approach would provide assistance to CAE models and better correlation between results can be made. In this study, all the tests were performed by utilizing a sled-on-sled testing method. An extreme care was taken to ensure that there is no bottoming-out force for this type of test while adjusting the impact speed of sled. Full frontal tests on FBCC structures were conducted by utilizing five high-speed cameras (HSCs), several accelerometers and a load wall. Excellent correlation was achieved between video tracking and accelerometers results for time histories of displacement and velocity. The standard deviation and coefficient of variance for the energy absorbed were very low suggesting the repeatability of the full frontal tests. The impact histories of FBCC specimens were consistent and in excellent agreement with respect to each other. Post-impact photographs showed the consistent crushing of composite crush cans and breakage of the bumper beam from middle due to the production of tensile stresses stretched caused by straightening of the bumper curvature after hitting the load wall.


2011 ◽  
Vol 233-235 ◽  
pp. 1222-1226
Author(s):  
Sai Nan Wei ◽  
Li Chen

High performance fiber reinforced composites have a long history and wide usage in aerospace, sports, military, etc. In this paper applications of composites on textile machinery were elaborated, such as carbon-fiber reinforced plastic (CFRP) guide bar, composite rapier belt and rapier head in rapier loom, nylon shuttle, carbon fiber composite heddle frame for high-speed looms, transmission shaft, needle bed, conveyor belts. It indicated that the composites can improve the performance obviously. Along with the rapid development of textile, fiber reinforced composites are continuous replacing the traditional materials as cast iron, steel and aluminum textile machine parts, But the applications of composites on textile machinery are still in the initial stage. High price is the major obstruction factor for its development. Through improving the level of automation technology, reducing producing cost, rational design of structure, the producing cost can be sharply reduced, which is also benefit for textile machinery development.


2018 ◽  
Vol 183 ◽  
pp. 01048
Author(s):  
Sidney Chocron ◽  
Alexander Carpenter ◽  
Rory Bigger ◽  
Nikki Scott ◽  
Kyle Warren ◽  
...  

Two-dimensional (unidirectional) and 3-D woven carbon fiber reinforced plastic (CFRP) panels were produced by Albany Engineered Composites. Coupons were machined from the laminates for various mechanical tests in tension, torsion, and delamination. A batch of neat resin was also produced and the mechanical properties of the resin were determined. Some of the mechanical tests were performed at medium and high strain rates. The panels were tested under ballistic impact while recording the back face deflection with a stereo pair of high-speed cameras to perform digital image correlation. Additionally, an ultra-high-speed camera provided a better resolution of the initial (50 ms) pyramid that forms after impact. The mechanical tests were used to determine the material properties of the constituents as well as the strength of the interface between matrix and fibers. The properties were incorporated in material models in LS-DYNA to perform simulations of the mechanical tests as well as the ballistic experiments. The ballistic limits, residual velocities, and deflection histories served as a validation of the model and were predicted with good accuracy for two thicknesses of the two-dimensional composite and one of the 3-D composite.


2017 ◽  
Vol 893 ◽  
pp. 31-34 ◽  
Author(s):  
Fei Fei Wang

The new carbon fiber composite materials trains hood is designed with vacuum infusion molding process characteristics and performance of existing trains hood according to the characteristics of the high specific strength and stiffness of the carbon fiber composite materials. According to the requirements of referring to the IEC61373-1999[Railway Rolling Stock Equipment Shock and Vibration Testing Standards] and GB/T3317-2006[Electric Locomotive General Technical Conditions], the strength and deformation of the trains hood is calculated and analyzed on the conditions of the impaction, air movement load case and the end compression. The test result shows that the mechanical properties of the structure meets the requirements in the 500km/h high-speed test train.


Author(s):  
A. Seyed Yaghoubi ◽  
P. Begeman ◽  
G. Newaz ◽  
D. Board ◽  
Y. Chen ◽  
...  

This study presents experimental investigations of generic steel Front Bumper and Crush Can (FBCC) assemblies subjected to a 40% offset frontal impact. As automotive industries aim to reduce overall vehicle weight by applying lighter-weight materials to its structures, component-level studies become important. Computer aided models are valuable tools to complement physical testing by assessing the performances of these structures. Due to the lack of studies on component-level tests with FBCCs, a novel component-level test procedure would be useful to aid in CAE correlation. A sled-on-sled testing method was used to perform all the tests reported here. Impact speed was optimized such that there was no bottoming-out force for this type of test. Three high-speed cameras (HSCs), an infrared (IR) thermal camera, and several accelerometers were utilized to study impact performance of the FBCC structures. The results showed that time histories of displacement and velocity from video tracking and accelerometers were in good agreement. The force-time history and force-displacement curves from different FBCC specimens were consistent and in good agreement with respect to each other with a low coefficient of variation calculated. Post-impact deformation pattern analysis of the samples showed consistent crush patterns. Heat was generated and dissipated at the tip of the crush can and progressed as the can started to fold.


Sign in / Sign up

Export Citation Format

Share Document