Path Generation Algorithm Verification of Five DOF Robotic Arm With Linear Actuator Using MATLAB Sim-Mechanics

Author(s):  
Maged M. Abou Elyazed ◽  
A. S. Zaghloul ◽  
Ahmed Y. AbdelHamid

Manipulators have been considered the backbone of industrial world for decades. The main aspect of industrial robotic arm is its ability to track a certain path in the 3D space. Using liner actuators to drive multi degrees of freedom robot offers high load capacity, but path generation algorithm of such robot is relatively complicated and computationally expensive. Furthermore, limitations in the joints workspace are existed. In this work, five degrees of freedom robotic arm is constructed to guaranty suitable workspace. Forward and inverse kinematic algorithms are evaluated. Moreover, path generation algorithm in Cartesian space is held using three different motion planning techniques. Sim-Mechanics toolbox under MATLAB is used to verify the introduced forward kinematics, inverse kinematics, and path generation algorithms. Thus, a comparison between the three introduced motion planning techniques is illustrated. Finally, the generated paths are experimentally applied on the case study. The work aims to illustrate the importance of simulation in the field of robotic arm algorithms verification.

Author(s):  
Xin-Jun Liu ◽  
Zhao Gong ◽  
Fugui Xie ◽  
Shuzhan Shentu

In this paper, a mobile robot named VicRoB with 6 degrees of freedom (DOFs) driven by three tracked vehicles is designed and analyzed. The robot employs a 3-PPSR parallel configuration. The scheme of the mechanism and the inverse kinematic solution are given. A path planning method of a single tracked vehicle and a coordinated motion planning of three tracked vehicles are proposed. The mechanical structure and the electrical architecture of VicRoB prototype are illustrated. VicRoB can achieve the point-to-point motion mode and the continuous motion mode with employing the motion planning method. The orientation precision of VicRoB is measured in a series of motion experiments, which verifies the feasibility of the motion planning method. This work provides a kinematic basis for the orientation closed loop control of VicRoB whether it works on flat or rough road.


2012 ◽  
Vol 452-453 ◽  
pp. 1496-1500
Author(s):  
Li Hua Lu ◽  
Ying Chun Liang ◽  
Fu Li Yu ◽  
Bao Ku Su

A novel design of high load capacity multiaxis positioning stages with accuracy in the range of nanometers is presented. For strokes of 2mm with no play and high stiffness a general design principle supporting five Cartesian degrees of freedom has been developed using a new parallel kinematic topology based on Parallelogram arrangements. The five uniform feed drives are improved dual mode mechanism with servomotor and ballscrew as macro-actuator and piezoelectric transducer (PZT) with resolution of 1.2nm as micro-actuator. The performance of the setup and its kinematic properties are described as well as resolution of the five motions and their crosstalk. The setup has been implemented with outstanding characteristics and excellent reliability for alignment of a multigrating mosaic compressor in a PW-class CPA-laser.


2016 ◽  
Vol 7 (2) ◽  
pp. 155-166
Author(s):  
Zirong Luo ◽  
Jianzhong Shang ◽  
Guowu Wei ◽  
Lei Ren

Abstract. This paper presents a novel bio-inspired modular robotic arm that is purely evolved and developed from a mechanical stem cell. Inspired by stem cell whilst different from the other robot "cell" or "molecule", a fundamental mechanical stem cell is proposed leading to the development of mechanical cells, bones and a Sarrus-linkage-based muscle. Using the proposed bones and muscles, a bio-inspired modular-based five-degrees-of-freedom robotic arm is developed. Then, kinematics of the robotic arm is investigated which is associated with an optimization-method-based numerical iterative algorithm leading to the inverse kinematic solutions through solving the non-linear transcendental equations. Subsequently, numerical example of the proposed robotic arm is provided with simulations illustrating the workspace and inverse kinematics of the arm. Further, a prototype of the robotic arm is developed which is integrated with low-level control systems, and initial motion and manipulation tests are implemented. The results indicate that this novel robotic arm functions appropriately and has the virtues of lower cost, larger workspace, and a simpler structure with more compact size.


2016 ◽  
Vol 39 (11) ◽  
pp. 1735-1748 ◽  
Author(s):  
Onder Tutsoy ◽  
Duygun Erol Barkana ◽  
Sule Colak

An autonomous humanoid robot (HR) with learning and control algorithms is able to balance itself during sitting down, standing up, walking and running operations, as humans do. In this study, reinforcement learning (RL) with a complete symbolic inverse kinematic (IK) solution is developed to balance the full lower body of a three-dimensional (3D) NAO HR which has 12 degrees of freedom. The IK solution converts the lower body trajectories, which are learned by RL, into reference positions for the joints of the NAO robot. This reduces the dimensionality of the learning and control problems since the IK integrated with the RL eliminates the need to use whole HR states. The IK solution in 3D space takes into account not only the legs but also the full lower body; hence, it is possible to incorporate the effect of the foot and hip lengths on the IK solution. The accuracy and capability of following real joint states are evaluated in the simulation environment. MapleSim is used to model the full lower body, and the developed RL is combined with this model by utilizing Modelica and Maple software properties. The results of the simulation show that the value function is maximized, temporal difference error is reduced to zero, the lower body is stabilized at the upright, and the convergence speed of the RL is improved with use of the symbolic IK solution.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 50
Author(s):  
Ong Kok Meng ◽  
Ong Pauline ◽  
Low Ee Soon ◽  
Sia Chee Kiong

This study presents the development of robotic arm with computer vision functionalities to recognise the objects with different colours, pick up the nearest target object and place it into particular location. In this paper, the overview of the robotic arm system is first presented. Then, the design of five-degrees of freedom (5-DOF) robotic arm is introduced, followed by the explanation of the image processing technique used to recognize the objects with different colours and obstacle detection. Next, the forward kinematic modelling of the robotic arm using Denavit-Hartenberg algorithm and solving the inverse kinematic of the robotic arm using modified flower pollination algorithm (MFPA) are interpreted. The result shows that the robotic arm can pick the target object accurately and place it in its particular place successfully. The concern on user safety is also been taken into consideration where the robotic arm will stop working when the user hand (obstacle) is detected and resume its process when there is no obstacle.  


2014 ◽  
Vol 984-985 ◽  
pp. 1245-1252 ◽  
Author(s):  
Jayabalan Sudharsan ◽  
L. Karunamoorthy

Designing a humanoid robot is a complex issue and the exact resemblance of human arm movements has not been achieved in many of the previously developed robots. This paper is going to be much focused on the design of a humanoid robot arm which has a unique approach which has never been developed earlier. Even though all the robots that have been developed using 6-Degrees of Freedom (DOF) and 7-DOF can reach any point in the space, some of the orientation cannot be reached by the end effector plane effectively. So an 8-DOF freedom based robotic arm has been specially designed and developed to resemble the exact movements of the human being. This robot has 3-DOF for shoulder joint, 2-DOF for the elbow joint, and 3-DOF for the wrist with fingers as the end effector. Almost all the robots have only 1-DOF to the elbow joint but here 2-DOF has been proposed to resemble the exact movements of the human being (2-DOF at elbow) to solve the above mentioned problem. Literature reviews and design model are discussed in detail to support the proposal that has been made. Forward and inverse Kinematic relationships are also obtained for the joint link parameter. This humanoid robot arm which has been designed and developed is one of the modules of a human size humanoid robot RALA (Robot based on Autonomous Learning Algorithm).


2012 ◽  
Vol 6 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Michael R Dawson ◽  
Farbod Fahimi ◽  
Jason P Carey

The objective of above-elbow myoelectric prostheses is to reestablish the functionality of missing limbs and increase the quality of life of amputees. By using electromyography (EMG) electrodes attached to the surface of the skin, amputees are able to control motors in myoelectric prostheses by voluntarily contracting the muscles of their residual limb. This work describes the development of an inexpensive myoelectric training tool (MTT) designed to help upper limb amputees learn how to use myoelectric technology in advance of receiving their actual myoelectric prosthesis. The training tool consists of a physical and simulated robotic arm, signal acquisition hardware, controller software, and a graphical user interface. The MTT improves over earlier training systems by allowing a targeted muscle reinnervation (TMR) patient to control up to two degrees of freedom simultaneously. The training tool has also been designed to function as a research prototype for novel myoelectric controllers. A preliminary experiment was performed in order to evaluate the effectiveness of the MTT as a learning tool and to identify any issues with the system. Five able-bodied participants performed a motor-learning task using the EMG controlled robotic arm with the goal of moving five balls from one box to another as quickly as possible. The results indicate that the subjects improved their skill in myoelectric control over the course of the trials. A usability survey was administered to the subjects after their trials. Results from the survey showed that the shoulder degree of freedom was the most difficult to control.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 444
Author(s):  
Guoning Si ◽  
Liangying Sun ◽  
Zhuo Zhang ◽  
Xuping Zhang

This paper presents the design, fabrication, and testing of a novel three-dimensional (3D) three-fingered electrothermal microgripper with multiple degrees of freedom (multi DOFs). Each finger of the microgripper is composed of a V-shaped electrothermal actuator providing one DOF, and a 3D U-shaped electrothermal actuator offering two DOFs in the plane perpendicular to the movement of the V-shaped actuator. As a result, each finger possesses 3D mobilities with three DOFs. Each beam of the actuators is heated externally with the polyimide film. The durability of the polyimide film is tested under different voltages. The static and dynamic properties of the finger are also tested. Experiments show that not only can the microgripper pick and place microobjects, such as micro balls and even highly deformable zebrafish embryos, but can also rotate them in 3D space.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Sign in / Sign up

Export Citation Format

Share Document