Design, Modeling and Development of a Compliant Dual Resonator-Isolator

Author(s):  
Boris Jerkovic ◽  
Abram Rowell ◽  
Nathan Ellis ◽  
Ayse Tekes

Abstract This paper investigates the construction, instrumentation, and dynamical modeling of a coupled three degrees of freedom compliant parallel arm mechanism. The compliant parallel arm, whose complete construction is carried out using 3D printing of polylactide (PLA) filaments, is a folded beam type mechanism, which is comprised of one primary and two secondary masses connected to two large deflecting beams. Dynamical model of the complete mechanism is obtained using Elastica Theory, where the large deflecting beams are considered as fixed-free cantilever beams subjected to a vertical tip load. Nonlinear load deflection curve, which is derived from the solutions of elliptical integrals, is approximated by a high-order polynomial function. Finally, the dynamics of the complete mechanism is derived using a classical lumped mass-spring-damper second order system. A linear actuator, PCB triaxial accelerometers, two laser displacement sensors and Arduino are utilized to gather acceleration and position information of each mass to identify the parameters of the lumped second order model using the offline Elastica Theory-based approach and polynomial fitting method. Numerical and experimental results verify the effectiveness of the proposed parameter identification schemes. Since system is nonlinear, state feedback linearization approach is adapted to linearize system equations at all operating points to control the trajectory of primary mass using a PID controller.

2021 ◽  
Vol 11 (8) ◽  
pp. 3430
Author(s):  
Erik Cuevas ◽  
Héctor Becerra ◽  
Héctor Escobar ◽  
Alberto Luque-Chang ◽  
Marco Pérez ◽  
...  

Recently, several new metaheuristic schemes have been introduced in the literature. Although all these approaches consider very different phenomena as metaphors, the search patterns used to explore the search space are very similar. On the other hand, second-order systems are models that present different temporal behaviors depending on the value of their parameters. Such temporal behaviors can be conceived as search patterns with multiple behaviors and simple configurations. In this paper, a set of new search patterns are introduced to explore the search space efficiently. They emulate the response of a second-order system. The proposed set of search patterns have been integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain the global solution of complex optimization problems. To analyze the performance of the proposed scheme, it has been compared in a set of representative optimization problems, including multimodal, unimodal, and hybrid benchmark formulations. Numerical results demonstrate that the proposed SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.


Author(s):  
Min Mao ◽  
Norman M. Wereley ◽  
Alan L. Browne

Feasibility of a sliding seat utilizing adaptive control of a magnetorheological (MR) energy absorber (MREA) to minimize loads imparted to a payload mass in a ground vehicle for frontal impact speeds as high as 7 m/s (15.7 mph) is investigated. The crash pulse for a given impact speed was assumed to be a rectangular deceleration pulse having a prescribed magnitude and duration. The adaptive control objective is to bring the payload (occupant plus seat) mass to a stop using the available stroke, while simultaneously accommodating changes in impact velocity and occupant mass ranging from a 5th percentile female to a 95th percentile male. The payload is first treated as a single-degree-of-freedom (SDOF) rigid lumped mass, and two adaptive control algorithms are developed: (1) constant Bingham number control, and (2) constant force control. To explore the effects of occupant compliance on adaptive controller performance, a multi-degree-of-freedom (MDOF) lumped mass biodynamic occupant model was integrated with the seat mass. The same controllers were used for both the SDOF and MDOF cases based on SDOF controller analysis because the biodynamic degrees of freedom are neither controllable nor observable. The designed adaptive controllers successfully controlled load-stroke profiles to bring payload mass to rest in the available stroke and reduced payload decelerations. Analysis showed extensive coupling between the seat structures and occupant biodynamic response, although minor adjustments to the control gains enabled full use of the available stroke.


2018 ◽  
Vol 47 (9) ◽  
pp. 1971-1981 ◽  
Author(s):  
Lee F. Gabler ◽  
Jeff R. Crandall ◽  
Matthew B. Panzer

Author(s):  
Afrizal Mayub ◽  
Fahmizal Fahmizal

This paper presents a sensor-based stability walk for bipedal robots by using force sensitive resistor (FSR) sensor. To perform walk stability on uneven terrain conditions, FSR sensor is used as feedbacks to evaluate the stability of bipedal robot instead of the center of pressure (CoP). In this work, CoP that was generated from four FSR sensors placed on each foot-pad is used to evaluate the walking stability. The robot CoP position provided an indication of walk stability. The CoP position information was further evaluated with a fuzzy logic controller (FLC) to generate appropriate offset angles to be applied to meet a stable situation. Moreover, in this paper designed a FLC through CoP region's stability and stable compliance control are introduced. Finally, the performances of the proposed methods were verified with 18-degrees of freedom (DOF) kid-size bipedal robot.<br /><br />


Sign in / Sign up

Export Citation Format

Share Document