Assessment of Parkinson’s Disease Tremor and Correlation Analysis With Applied Signal Processing

Author(s):  
Na Zhu ◽  
Nathaniel S. Miller

Abstract Accurate measurement and assessment of Parkinson’s disease (PD) tremor is important for patients, clinicians, and researchers to track changes in disease progression and the effectiveness of therapeutic interventions. This study measured resting, postural, and kinetic tremor from patient’s most-affected hand with accelerometers and gyrometers, thus the linear and rotational motions in the x, y, z directions were obtained. Data were collected when patients were both ON and OFF their anti-PD medications. A bandpass filter was applied to extract raw tremor information and several signal processing algorithms were used to analyze the data in both time and frequency domains, including the correlations between motions at different directions. The results of medication effectiveness on PD tremor and the correlational analyses will be discussed.


Author(s):  
Na Zhu ◽  
Nathaniel S. Miller

Abstract Accurate measurement and assessment of Parkinson's disease (PD) tremor is important for patients, clinicians, and researchers to track changes in disease progression and the effectiveness of therapeutic interventions. This study measured resting, postural, and kinetic tremor from patient's most-affected hand with accelerometers and gyrometers; thus, the linear and rotational motions in the x, y, z directions were obtained. Data were collected when patients were both ON and OFF their anti-PD medications. A bandpass filter was applied to extract raw tremor information, and several signal processing algorithms were used to analyze the data in both time and frequency domains, including the correlations between motions in different directions. The results of medication effectiveness on PD tremor and the correlational analyses were discussed.



2010 ◽  
Vol 8 (59) ◽  
pp. 842-855 ◽  
Author(s):  
Athanasios Tsanas ◽  
Max A. Little ◽  
Patrick E. McSharry ◽  
Lorraine O. Ramig

The standard reference clinical score quantifying average Parkinson's disease (PD) symptom severity is the Unified Parkinson's Disease Rating Scale (UPDRS). At present, UPDRS is determined by the subjective clinical evaluation of the patient's ability to adequately cope with a range of tasks. In this study, we extend recent findings that UPDRS can be objectively assessed to clinically useful accuracy using simple, self-administered speech tests, without requiring the patient's physical presence in the clinic. We apply a wide range of known speech signal processing algorithms to a large database (approx. 6000 recordings from 42 PD patients, recruited to a six-month, multi-centre trial) and propose a number of novel, nonlinear signal processing algorithms which reveal pathological characteristics in PD more accurately than existing approaches. Robust feature selection algorithms select the optimal subset of these algorithms, which is fed into non-parametric regression and classification algorithms, mapping the signal processing algorithm outputs to UPDRS. We demonstrate rapid, accurate replication of the UPDRS assessment with clinically useful accuracy (about 2 UPDRS points difference from the clinicians' estimates, p < 0.001). This study supports the viability of frequent, remote, cost-effective, objective, accurate UPDRS telemonitoring based on self-administered speech tests. This technology could facilitate large-scale clinical trials into novel PD treatments.







2020 ◽  
Vol 1537 ◽  
pp. 012018
Author(s):  
N Schreiner ◽  
A Keil ◽  
W Sauer-Greff ◽  
R Urbansky ◽  
F Friederich


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yinan Yu ◽  
Jian Yang ◽  
Tomas McKelvey ◽  
Borys Stoew

Ultrawideband (UWB) technology has many advantages compared to its narrowband counterpart in many applications. We present a new compact low-cost UWB radar for indoor and through-wall scenario. The focus of the paper is on the development of the signal processing algorithms for ranging and tracking, taking into account the particular properties of the UWB CMOS transceiver and the radiation characteristics of the antennas. Theoretical analysis for the algorithms and their evaluations by measurements are presented in the paper. The ranging resolution of this UWB radar has achieved 1-2 mm RMS accuracy for a moving target in indoor environment over a short range, and Kalman tracking algorithm functions well for the through-wall detection.



Sign in / Sign up

Export Citation Format

Share Document