Application of the Tornado-Like Flow Theory to the Study of Blood Flow in the Heart and Main Vessels: Study of the Potential Swirling Jets Structure in an Arbitrary Viscous Medium

Author(s):  
E. Talygin ◽  
G. Kiknadze ◽  
A. Agafonov ◽  
A. Gorodkov

Abstract In previous works it has been proved that the dynamic geometry of the streamlined surface of the flow channel of the heart chambers and main arteries corresponds with a good agreement to the shape of the swirling flow streamlines. The vectorial velocity field of such a flow in a cylindrical coordinate system was described by means of specific analytical solution basing on the potentiality of the longitudinal and radial velocity components. The viscosity of the medium was taken into account only in the expression for the azimuthal velocity component and the significant effect of viscosity was manifested only in a narrow axial region of a swirling jet. The flow described by the above relations is quasipotential, axisymmetric, and convergent. The structural organization of this flow implies the elimination of rupture and stagnation zones, and minimizes the viscous losses. The proximity of the real blood flow under the normal conditions to the specified class of swirling flows allows us to determine the basic properties of the blood flow possessing the high pressure-flow characteristics without stability loss. The blood flow has an external border, and the interaction with the channel wall and between moving fluid elements is weak. These properties of the jet explain the possibility of a balanced blood flow in biologically active boundaries. Violation of the jet properties can lead to the excitation of biologically active components and trigger the corresponding cascade protective and compensatory processes. The evolution of the flow is determined by the time-dependent characteristic functions, which are the frequency characteristics of the rotating jet, as well as functions depending on the dimension of the swirling jet. Previous experimental studies revealed close connection between changes in the characteristic functions and dynamics of the cardiac cycle. Therefore, it is natural to express these functions in analytical form. For these purposes it was necessary to establish the link between these functions and the spatial characteristics of the swirling jet. To solve this problem the analytical solution for the velocity field of a swirling jet was substituted into the Navier-Stokes system and continuity differential equations in a cylindrical coordinate system. As a result, a new system of differential equations was obtained where the characteristic functions could be derived. The solution of these equations allows the identification of time-dependent characteristic functions, and the establishment of a link between the characteristic functions and the spatial coordinates of the swirling jet. This link gives the opportunity to substantiate a theoretical possibility for the modeling of quasipotential viscous flows with a given structure. The definition of characteristic functions makes it possible to obtain the exact solution which allows formalization of the boundary conditions for physical modeling and experimental study of this flow type. Such transformations allow the definition of the conditions supporting renewable swirling blood flow in the transport arterial segment of the circulatory system and provide the basis for new principles of modeling, diagnosis and surgical treatment of circulatory disorders associated with the changes in geometry of the heart and great vessels.

Author(s):  
Shuangbiao Liu ◽  
W. Wayne Chen ◽  
Diann Y. Hua

Step bearings are frequently used in industry for better load capacity. Analytical solutions to the Rayleigh step bearing and a rectangular slider with a finite width are available in literature, but none for a fan-shaped thrust step bearing. This study starts with a known solution to the Laplace equation in a cylindrical coordinate system, which is in the form of infinite summation. An analytical solution to pressure is derived in this paper for hydrodynamic lubrication problems encountered in the fan-shaped step bearing. The presented solutions can be useful for designers to maximize bearing performance as well as for researchers to benchmark numerical lubrication models.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1973 ◽  
Vol 28 (2) ◽  
pp. 206-215
Author(s):  
Hanns Ruder

Basic in the treatment of collective rotations is the definition of a body-fixed coordinate system. A kinematical method is derived to obtain the Hamiltonian of a n-body problem for a given definition of the body-fixed system. From this exact Hamiltonian, a consequent perturbation expansion in terms of the total angular momentum leads to two exact expressions: one for the collective rotational energy which has to be added to the groundstate energy in this order of perturbation and a second one for the effective inertia tensor in the groundstate. The discussion of these results leads to two criteria how to define the best body-fixed coordinate system, namely a differential equation and a variational principle. The equivalence of both is shown.


Author(s):  
Heather Johnston ◽  
Colleen Dewis ◽  
John Kozey

Objective The objectives were to compare cylindrical and spherical coordinate representations of the maximum reach envelope (MRE) and apply these to a comparison of age and load on the MRE. Background The MRE is a useful measurement in the design of workstations and quantifying functional capability of the upper body. As a dynamic measure, there are human factors that impact the size, shape, and boundaries of the MRE. Method Three-dimensional reach measures were recorded using a computerized potentiometric system for anthropometric measures (CPSAM) on two adult groups (aged 18–25 years and 35–70 years). Reach trials were performed holding .0, .5, and 1 kg. Results Three-dimensional Cartesian coordinates were transformed into cylindrical ( r, θ , Z) and spherical ( r, θ, ϕ) coordinates. Median reach distance vectors were calculated for 54 panels within the MRE as created by incremented banding of the respective coordinate systems. Reach distance and reach area were compared between the two groups and the loaded conditions using a spherical coordinate system. Both younger adults and unloaded condition produced greater reach distances and reach areas. Conclusions Where a cylindrical coordinate system may reflect absolute reference for design, a normalized spherical coordinate system may better reflect functional range of motion and better compare individual and group differences. Age and load are both factors that impact the MRE. Application These findings present measurement considerations for use in human reach investigation and design.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


2006 ◽  
Vol 2 (S239) ◽  
pp. 314-316 ◽  
Author(s):  
Achim Weiss ◽  
Martin Flaskamp

AbstractThe non-local, time-dependent convection theory of Kuhfuß (1986) in both its one- and three-equation form has been implemented in the Garching stellar evolution code. We present details of the implementation and the difficulties encountered. Specific test cases have been calculated, among them a 5 M⊙ star and the Sun. These cases point out deficits of the theory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.


2011 ◽  
Vol 3 (4) ◽  
pp. 420-447
Author(s):  
Ayman Mourad ◽  
Jawad Zaarour

AbstractAn axisymmetric formulation for modeling three-dimensional deformation of structures of revolution is presented. The axisymmetric deformation model is described using the cylindrical coordinate system. Large displacement effects and material nonlinearities and anisotropy are accommodated by the formulation. Mathematical derivation of the formulation is given, and an example is presented to demonstrate the capabilities and efficiency of the technique compared to the full three-dimensional model.


Sign in / Sign up

Export Citation Format

Share Document