Centrifugal Compressor Performance Prediction Using Gaussian Process Regression and Artificial Neural Networks

Author(s):  
Pau Cutrina Vilalta ◽  
Hui Wan ◽  
Soumya S. Patnaik

Abstract In this paper, we use various regression models and Artificial Neural Network (ANN) to predict the centrifugal compressor performance map. Particularly, we study the accuracy and efficiency of Gaussian Process Regression (GPR) and Artificial Neural Networks in modelling the pressure ratio, given the mass flow rate and rotational speed of a centrifugal compressor. Preliminary results show that both GPR and ANN can predict the compressor performance map well, for both interpolation and extrapolation. We also study the data augmentation and data minimzation effects using the GPR. Due to the inherent pressure ratio data distribution in mass-flow-rate and rotational-speed space, data augmentation in the rotational speed is more effective to improve the ANN performance than the mass flow rate data augmentation.

Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Kaiyue Zhang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng

Abstract The flow in the intake manifold of a downsized internal combustion engine has become more unsteady due to the reduction of cylinder number and increasing boosting level. The turbocharger compressor is thus imposed by an unsteady backpressure when matched with an engine. It has been experimentally confirmed that the compressor performance is affected when exposed to pulsating backpressure. In order to enhance compressor stability and achieve better turbo-engine matching, it is necessary to understand behaviors of compressor at pulsating backpressure conditions. In this study, the performance of compressor exposed to pulsating backpressure is experimentally studied on the compressor test rig located in Shanghai Jiao Tong University. The results show that compressor performance with pulsating backpressure is notably different from the one with constant backpressure. Hysteresis loops which encapsulate the steady performance are generated at pulsating backpressure conditions due to filling-emptying effect. The mass flow rate, pulse frequency and compressor rotational speed all have evident influence on dynamic behaviors of the compressor. As the mass flow rate and rotational speed increase, hysteresis loops are enlarged and the unsteady behaviors are enhanced. The influence of pulsating backpressure on the compressor surge margin is analyzed in detail. Results demonstrate that the stable operation range is evidently influenced by the pulsating backpressure. Particularly, the mass flow rate of surge is postponed by 15.1% compared with the corresponding constant backpressure condition. Fast Fourier Transform method (FFT) is applied to identify the initiation of surge. The frequency domain analysis proves that the pulsating backpressure has little influence on the frequency of surge, but the strength of surge is alleviated indicated by the magnitude of fluctuations. The study provides an insight on the influence of pulsating backpressure on the centrifugal compressor, which can benefit the design methodology of compressor as well as turbo-engine matching.


Author(s):  
Hemant Kumar ◽  
Chetan S. Mistry

Abstract The Supercritical carbon-dioxide Brayton cycle main attraction is due to the Supercritical characteristic of the working fluid, carbon-dioxide (SCO2). Some of the advantages of using SCO2 are relatively low turbine inlet temperature, the compression work will be low, and the system will be compact due to the variation of thermodynamic properties (like density, and specific heat ratio) of SCO2 near the critical point. SCO2 behave more like liquid when its state is near the critical point (Total Pressure = 7.39 MPa, Total Temperature = 305 K), operating compressor inlet near critical point can minimize compression work. For present study the centrifugal compressor was designed to operate at 75,000 rpm with pressure ratio (P.R) = 1.8 and mass flow rate = 3.53 kg/s as available from Sandai report. Meanline design for centrifugal compressor with SCO2 properties was done. The blade geometry was developed using commercial CAD Ansys Bladegen. The flow domain was meshed using Ansys TurboGrid. ANSYS CFX was used as a solver for present numerical study. The thermodynamic properties of SCO2 were imported from the ANSYS flow material library using SCO2.RPG [NIST thermal physics properties of fluid system]. In order to ensure the change in flow physics the mesh independence study was also conducted. The present paper discuss about the performance and flow field study targeting different mass flow rates as exit boundary condition. The comparison of overall performance (Pressure Ratio, the Blade loading, Stage efficiency and Density variation) was done with three different mass flow rates. The designed and simulated centrifugal compressor meets the designed pressure rise requirement. The variation of mass flow rate on performance of centrifugal compressor was tend to be similar to conventional centrifugal compressor. The paper discusses about the effect of variation in density, specific heat ratio and pressure of SCO2 with different mass flow outlet condition. The performance map of numerical study were validated with experiment results and found in good agreement with experimental results. The change in flow properties within the rotor flow passage are found to be interesting and very informative for future such centrifugal compressor design for special application of SCO2 Brayton cycle. 80% mass flow rate has given better results in terms of aerodynamic performance. Abrupt change in thermodynamic properties was observed near impeller inlet region. Strong density variations are observed at compressor inlet.


Author(s):  
Chihiro Myoren ◽  
Yasuo Takahashi ◽  
Manabu Yagi ◽  
Takanori Shibata ◽  
Tadaharu Kishibe

An axial compressor was developed for an industrial gas turbine equipped with a water atomization cooling (WAC) system, which is a kind of inlet fogging technique with overspray. The compressor performance was evaluated using a 40MW-class test facility for the advanced humid air turbine system. A prediction method to estimate the effect of WAC was developed for the design of the compressor. The method was based on a streamline curvature (SLC) method implementing a droplet evaporation model. Four test runs with WAC have been conducted since February 2012. The maximum water mass flow rate was 1.2% of the inlet mass flow rate at the 4th test run, while the design value was 2.0%. The results showed that the WAC decreased the inlet and outlet temperatures compared with the DRY (no fogging) case. These decreases changed the matching point of the gas turbine, and increased the mass flow rate and the pressure ratio by 1.8% and 1.1%, respectively. Since prediction results agreed with the results of the test run qualitatively, the compressor performance improvement by WAC was confirmed both experimentally and analytically. The test run with the design water mass flow rate is going to be conducted in the near future.


1996 ◽  
Author(s):  
A. Whitfield ◽  
Abu Hasan Abdullah

In many turbomachinery applications a compressor is directly driven by a turbine; for turbocharger applications a centrifugal compressor is usually adopted which is generally driven by a radial flow turbine, although mixed flow or axial flow turbines are occasionally required. A non-dimensional design procedure is developed to provide the basic dimensions and blade angles of centrifugal compressor impellers, whilst accounting for the turbine conditions as assessed through the matching requirements. The design of the turbine is then considered further in Part B. The procedure can be applied for any desired compressor pressure ratio and target efficiency to develop an initial non-dimensional skeleton design. No other parameters are required from the initial specification and the design is developed non-dimensionally without recourse to empirical loss models and the associated uncertainties as the target efficiency must be specified. The procedure provides graphical information with respect to the impeller discharge conditions and inlet conditions from which the designer must select the most appropriate design. The screen graphics interface enables the designer to search across the design options; as this search is carried out numerical data are displayed and continuously up-dated to provide immediate information on which an infnrmed assessment can be based. In addition to the compressor design options which are provided the matching conditions for the drive turbine provides information, such as specific speed, non-dimensional mass flow rate and pressure ratio, relevant to the turbine design. Judgements with respect to the design options for the compressor can then be made with the consequences for the associated turbine design clearly in view. The non-dimensional design can be translated into an absolute design through the specification of the required mass flow rate and the inlet stagnation pressure and temperature.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2033
Author(s):  
Amjid Khan ◽  
Muhammad Irfan ◽  
Usama Muhammad Niazi ◽  
Imran Shah ◽  
Stanislaw Legutko ◽  
...  

Downsizing in engine size is pushing the automotive industry to operate compressors at low mass flow rate. However, the operation of turbocharger centrifugal compressor at low mass flow rate leads to fluid flow instabilities such as stall. To reduce flow instability, surface roughness is employed as a passive flow control method. This paper evaluates the effect of surface roughness on a turbocharger centrifugal compressor performance. A realistic validation of SRV2-O compressor stage designed and developed by German Aerospace Center (DLR) is achieved from comparison with the experimental data. In the first part, numerical simulations have been performed from stall to choke to study the overall performance variation at design conditions: 2.55 kg/s mass flow rate and rotational speed of 50,000 rpm. In second part, surface roughness of magnitude range 0–200 μm has been applied on the diffuser shroud to control flow instability. It was found that completely rough regime showed effective quantitative results in controlling stall phenomena, which results in increases of operating range from 16% to 18% and stall margin from 5.62% to 7.98%. Surface roughness as a passive flow control method to reduce flow instability in the diffuser section is the novelty of this research. Keeping in view the effects of surface roughness, it will help the turbocharger manufacturers to reduce the flow instabilities in the compressor with ease and improve the overall performance.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


2021 ◽  
Author(s):  
Raghuvaran D. ◽  
Satvik Shenoy ◽  
Srinivas G

Abstract Axial flow fans (AFF) are extensively used in various industrial sectors, usually with flows of low resistance and high mass flow rates. The blades, the hub and the shroud are the three major parts of an AFF. Various kinds of optimisation can be implemented to improve the performance of an AFF. The most common type is found to be geometric optimisation including variation in number of blades, modification in hub and shroud radius, change in angle of attack and blade twist, etc. After validation of simulation model and carrying out a grid independence test, parametric analysis was done on an 11-bladed AFF with a shroud of uniform radius using ANSYS Fluent. The rotational speed of the fan and the velocity at fan inlet were the primary variables of the study. The variation in outlet mass flow rate and total pressure was studied for both compressible and incompressible ambient flows. Relation of mass flow rate and total pressure with inlet velocity is observed to be linear and exponential respectively. On the other hand, mass flow rate and total pressure have nearly linear relationship with rotational speed. A comparison of several different axial flow tracks with the baseline case fills one of the research gaps.


Author(s):  
Dominik Schlüter ◽  
Robert P. Grewe ◽  
Fabian Wartzek ◽  
Alexander Liefke ◽  
Jan Werner ◽  
...  

Abstract Rotating stall is a non-axisymmetric disturbance in axial compressors arising at operating conditions beyond the stability limit of a stage. Although well-known, its driving mechanisms determining the number of stall cells and their rotational speed are still marginally understood. Numerical studies applying full-wheel 3D unsteady RANS calculations require weeks per operating point. This paper quantifies the capability of a more feasible quasi-2D approach to reproduce 3D rotating stall and related sensitivities. The first part of the paper deals with the validation of a numerical baseline the simplified model is compared to in detail. Therefore, 3D computations of a state-of-the-art transonic compressor are conducted. At steady conditions the single-passage RANS CFD matches the experimental results within an error of 1% in total pressure ratio and mass flow rate. At stalled conditions, the full-wheel URANS computation shows the same spiketype disturbance as the experiment. However, the CFD underpredicts the stalling point by approximately 7% in mass flow rate. In deep stall, the computational model correctly forecasts a single-cell rotating stall. The stall cell differs by approximately 21% in rotational speed and 18% in circumferential size from the experimental findings. As the 3D model reflects the compressor behaviour sufficiently accurate, it is considered valid for physical investigations. In the second part of the paper, the validated baseline is reduced in radial direction to a quasi-2D domain only resembling the compressor tip area. Four model variations regarding span-wise location and extent are numerically investigated. As the most promising model matches the 3D flow conditions in the rotor tip region, it correctly yields a single-cell rotating stall. The cell differs by only 7% in circumferential size from the 3D results. Due to the impeded radial migration in the quasi-2D slice, however, the cell exhibits an increased axial extent. It is assumed, that the axial expansion into the adjacent rows causes the difference in cell speed by approximately 24%. Further validation of the reduced model against experimental findings reveals, that it correctly reflects the sensitivity of circumferential cell size to flow coefficient and individual cell speed to compressor shaft speed. As the approach reduced the wall clock time by 92%, it can be used to increase the physical understanding of rotating stall at much lower costs.


Author(s):  
Mengying Shu ◽  
Mingyang Yang ◽  
Ricardo F. Martinez-Botas ◽  
Kangyao Deng ◽  
Lei Shi

The flow in intake manifold of a heavily downsized internal combustion engine has increased levels of unsteadiness due to the reduction of cylinder number and manifold arrangement. The turbocharger compressor is thus exposed to significant pulsating backpressure. This paper studies the response of a centrifugal compressor to this unsteadiness using an experimentally validated numerical method. A computational fluid dynamic (CFD) model with the volute and impeller is established and validated by experimental measurements. Following this, an unsteady three-dimensional (3D) simulation is conducted on a single passage imposed by the pulsating backpressure conditions, which are obtained by one-dimensional (1D) unsteady simulation. The performance of the rotor passage deviates from the steady performance and a hysteresis loop, which encapsulates the steady condition, is formed. Moreover, the unsteadiness of the impeller performance is enhanced as the mass flow rate reduces. The pulsating performance and flow structures near stall are more favorable than those seen at constant backpressure. The flow behavior at points with the same instantaneous mass flow rate is substantially different at different time locations on the pulse. The flow in the impeller is determined by not only the instantaneous boundary condition but also by the evolution history of flow field. This study provides insights in the influence of pulsating backpressure on compressor performance in actual engine situations, from which better turbo-engine matching might be benefited.


Sign in / Sign up

Export Citation Format

Share Document