HVDC Interference on MGL Pipelines

2021 ◽  
Author(s):  
Vipul Sawant ◽  
Shraddha Garate

Abstract Mahanagar Gas is a City Gas Distribution Company engaged in the distribution of Natural Gas in and around Mumbai City. MGL has around 415 km of commissioned steel pipeline network which is being protected by ICCP. These pipelines are coated with three layer polyethylene coatings. Rectifying the external interferences on pipeline network is a major challenge for pipeline operating personnel in order to maintain safety and integrity of their pipeline. This technical paper is based on study of one of such external interference which posed a threat to MGL’s steel pipeline network. High Voltage Direct Current (HVDC) is a system for transmission of electricity over long distances. This system uses Direct Current (DC) for bulk transmission of electricity in contrast with the more common Alternating Current (AC) systems. HVDC is considered to be more effective to increase power grid delivery capabilities. A part of MGL’s pipeline network is currently facing interference due to a HVDC power substation on the outskirts of Mumbai. This substation is being operated by State Government and is affecting around 145 kms of MGL’s steel pipeline network during its monopolar operation for transmission of electricity. This interference is creating multiple anodic and cathodic areas on pipeline network with the help of a high magnitude current entering and exiting from pipeline at multiple locations which are difficult to predict and rectify. This technical paper will elaborate the concept of HVDC interference on steel pipelines. It will give a brief overview on the methodology adopted for identifying, monitoring and analyzing this interference phenomenon and will comment on the results of this analysis. It will throw light on a variety of technical challenges faced in dealing with this interference while operating a city gas distribution network in particular. And finally, it will discuss about possible remedial measures available and their effectiveness to curb this interference.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Atul Rawat ◽  
Sumeet Gupta ◽  
T. Joji Rao

Purpose This study aims to identify and rank the operational and financial risks causing a delay in the commencement of the city gas distribution project in India. Design/methodology/approach This study reviews the literature to identify operational and financial risks variables associated with infrastructure projects. Followed by a survey to isolate and assess the critical risk factors for city gas distribution network project in India. The survey data is evaluated using factor analysis to understand the latent structure of the critical risk factors. Second, the author ranks the identified variables as per significance by using the mean score method. Findings Five critical risk factors with 20 variables were extracted and assessed to build more understanding of their significance and impact on city gas distribution network project. Originality/value This study is the first attempt to follow the management approach to identify and rank operational and financial risks impacting city gas distribution project.


2019 ◽  
Vol 124 ◽  
pp. 16-34 ◽  
Author(s):  
Dan (Danesh) Nourzadeh ◽  
Pedram Mortazavi ◽  
Abbas Ghalandarzadeh ◽  
Shiro Takada ◽  
Mohammad Ahmadi

2014 ◽  
Vol 997 ◽  
pp. 891-895 ◽  
Author(s):  
Yu Li ◽  
Jian Jun Yu ◽  
Yan Qiang Li

For studying the difference of gas pipeline’s pressure between leakage condition and normal condition, a simulated network of city gas pipeline network based on principle of similitude was builded. Put this simulated pipe network as a experimental platform, we designed four sets of experiments. In each set of experiments, the pressure of each node in the leaked condition were compared to normal condition, to analysis the characteristics of node’s pressure change and summarize its change rule. It was found that regardless of the leak and load point how distribute in the pipe network, the differenal pressue between normal condition and leakage condition of leak point is largest, the pressure change of the node on the pipe which leak point is located is also large; pressure change of network is small relatively while leak and load point were farther; the closer from the gas source point, the node’s pressure change is more small.


Author(s):  
Ashwini Chavan

India today has an in depth network of underground pipelines used for the transportation and distribution of gas. Large factories, fertilizer factories and other industrial enterprises are the most consumers in PNG and today, however, with the rise in its popularity, it's currently utilized in the domestic sector similarly as a fuel within the automotive sector in large metropolitan cities. To bring gas to those end users within the boundaries of a significant city, it's necessary to create city gas distribution pipeline networks. India today has an intensive network of underground pipelines used for the transportation and distribution of fossil fuel. Large factories, fertilizer factories and other industrial enterprises are the most consumers in PNG and today, however, with the rise in its popularity, it's currently employed in the domestic sector additionally as a fuel within the automotive sector in large metropolitan cities. To bring gas to those end users within the boundaries of a significant city, it's necessary to create city gas distribution pipeline networks, these networks have already been founded within the cities of Delhi, Mumbai, Vadodara, Firozabad, Kanpur and plenty of more such networks are planned within the near future. Given the infrastructure and layout available in typical Indian cities, it becomes difficult to make such gas distribution networks without separate corridors for competing utilities. Reckoning on pressures, flow rates and economic criteria, these networks may be constructed with steel pipes, polyethylene (PE) pipes or a hybrid PE-steel pipe system. In contrast to borehole pipelines, which stretch for miles directly through open fields, the CGD network is more complex. These are located in densely populated areas, and an oversized number of network branches meet the wants of users in several locations in an exceedingly city. Although they're much smaller long and size than background pipelines, a city's network is far more dispersed and diverse. The rise within the number of branches means over the amount of sleeves, bends, reducers, fittings, etc. within the network, with the exception of the quantity of delivery points for the availability of fossil fuel. Due to the assorted activities of third parties other city agencies, the chance of injury and accidents is even on top of the substantial pipelines. of these factors require better security systems integrated into the network and therefore the need for special preparation to manage any emergency situation.


2017 ◽  
Author(s):  
D. Brikić

Accent is on determination of appropriate friction factor, and on selection of representative equation for natural gas flow under presented conditions in the network. Calculation of presented looped gas-pipeline network is done according to principles of Hardy Cross method. The final flows were calculated, for known pipes diameters and nodes consumptions while the flow velocities through pipes have to stand below certain values. In optimization problem flows are treated as constant, while the diameters are variables.


2012 ◽  
Author(s):  
Surbhi Arora ◽  
Manvinder Singh Pahwa ◽  
Varun Paliwal
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document