Impact of Thermodiffusion on Temperature Fields in Stationary Nanofluids

Author(s):  
Patricia E. Gharagozloo ◽  
Ken E. Goodson ◽  
John K. Eaton

The research community has reported a large variety of at times contradictory thermal conductivity enhancements for nanofluids. Some of the differences may result from thermodiffusion, which is the coupled transport of heat and nanoparticles in a temperature gradient. Thermodiffusion can influence the apparent conductivity observed in a given experimental setup. This work explores the potential impact of thermodiffusion on the inconsistencies of the previous results and on the observed temperature dependence of the thermal conductivity enhancement. The thermal conductivity variation with temperature is captured using infrared microscopy. The thermal conductivity distribution varies significantly over the temperature range 27 – 73°C. This work also explores the potential impact of aggregation, gravitational separation, and thermodiffusion on the time-evolution of the thermal conductivity. For 1 percent by volume aluminum oxide in deionized water, this work finds a thermal conductivity enhancement of between 1 and 15 percent depending on temperature and time, which corresponds to an enhancement factor of between 1 and 15. For 0.2 percent by volume carbon nanotubes in silicone oil, this work finds a thermal conductivity enhancement of 8 percent with no dependence on temperature, which corresponds to an enhancement factor of 40.

Author(s):  
Huaqing Xie ◽  
Wei Yu ◽  
Yang Li ◽  
Lifei Chen

Nanofluids have attracted increasing interest for more than a decade. A number of studies have demonstrated that nanofluids presented intriguing heat transfer enhancement performances. We produced a series of nanofluids and measured their thermal conductivities. The most used heat transfer fluids including deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG were used as the base fluids. Various nanoparticles (NPs) including Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs (DNPs), and carbon nanotubes (CNTs) with different pretreatments have been used as additives. In the present paper, we summarized our experimental results to elucidate the influencing factors for thermal conductivity enhancement of nanofluids. The thermal transport mechanisms in nanofluids were further discussed and the promising approaches for optimizing the thermal conductivity of nanofluids were proposed.


2018 ◽  
Author(s):  
Takuma Ohtaki ◽  
Maho Mitsuo ◽  
Takayuki Terauchi ◽  
Hiroshi Iguchi ◽  
Keiko Fujioka ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Hongying Wang ◽  
Yajuan Cheng ◽  
Zheyong Fan ◽  
Yangyu Guo ◽  
Zhongwei Zhang ◽  
...  

Nanophononic metamaterials have broad applications in fields such as heat management, thermoelectric energy conversion, and nanoelectronics. Phonon resonance in pillared low-dimensional structures has been suggested to be a feasible approach...


1991 ◽  
Vol 226 ◽  
Author(s):  
Wang Chunqing ◽  
Qian Yiyu ◽  
Jiang Yihong

AbstractIn this paper,a numerical simulation of thermal process in the SMT laser microsoldering joint has been developed, in which, the influence on thermal process of the factors such as the thermal conductivity variation of solder with temperature, light reflection coefficient of the lead wire surface, and heat exchange on the surface of SMT materials all have been considered. In order to carry this numerical calculation practice and prove it's results,the reflexive characteristic of light wave to the SMT materials has been gauged,and the dynamic temperature process of laser microjoint has been measured by a new experimental method which was invented by the authors.The results of numerical simulation have been borne out by the tests, and the influences of heating parameters on thermal process has been analysed in this paper.The conclusions will be advantageous to the further study of the microjoint quality control in the SMT laser microsoldering.


Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 116
Author(s):  
Xavier Paredes ◽  
Maria José Lourenço ◽  
Carlos Nieto de Castro ◽  
William Wakeham

Ionic liquids have been suggested as new engineering fluids, specifically in the area of heat transfer, and as alternatives to current biphenyl and diphenyl oxide, alkylated aromatics and dimethyl polysiloxane oils, which degrade above 200 °C, posing some environmental problems. Addition of nanoparticles to produce stable dispersions/gels of ionic liquids has proved to increase the thermal conductivity of the base ionic liquid, potentially contributing to better efficiency of heat transfer fluids. It is the purpose of this paper to analyze the prediction and estimation of the thermal conductivity of ionic liquids and IoNanofluids as a function of temperature, using the molecular theory of Bridgman and estimation methods previously developed for the base fluid. In addition, we consider methods that emphasize the importance of the interfacial area IL-NM in modelling the thermal conductivity enhancement. Results obtained show that it is not currently possible to predict or estimate the thermal conductivity of ionic liquids with an uncertainty commensurate with the best experimental values. The models of Maxwell and Hamilton are not capable of estimating the thermal conductivity enhancement of IoNanofluids, and it is clear that the Murshed, Leong and Yang model is not practical, if no additional information, either using imaging techniques at nanoscale or molecular dynamics simulations, is available.


Sign in / Sign up

Export Citation Format

Share Document