Characterization of High-Density Aircraft Electronic and Thermal Management Systems

2021 ◽  
Author(s):  
Joshua Kasitz ◽  
David Huitink

Abstract As aircrafts move toward electrification with the research and development of hybrid-electric powertrains, the focus has begun to shift to the reliability challenges of electronic devices subject to flight. Electronic components in aircraft applications are subject to two main sources of failure inducing stresses: the thermomechanical stresses that develop due to unequal coefficients of thermal expansion of different materials used in the components, and the stresses developing due to shocks and vibrations during flight as well as landing and takeoff. While the challenge of dealing with CTE mismatches is applicable to electronic devices in general, the ambient conditions surrounding the aircraft in flight, combined with weight and space constrains add significant logistical issues to any cooling mechanism. This paper will focus on the environmental influence on the thermal dissipation profile that will ultimately lead to CTE failures. The push toward more-electric-aircraft (MEA) increases the need to further advance the power and versatility of electronic cooling systems to adequately manage high density power modules, which until recently were not highly incorporated in aviation systems. Environmental conditions will play a large role in the design space and limitations of potential cooling solutions and will dictate the effectiveness of current thermal management systems. In arising scenarios where high-density electronics cannot be contained within a pressurized and temperature-controlled cabin, drastic pressure and temperature swings, facilitated by the external environment, will lead to an extra source of fluctuating stress on the cooling system. This is likely to be a prevalent factor in hybrid-electric and all-electric powertrains as requiring environmental controlled spaces for major components could be limited. This can easily be seen in current attempts to examine and redesign local cooling systems for electric motors in aviation. Representing just one of the major cooling requirements on an electric aircraft, motor cooling systems demonstrate the universal cooling problems limiting all aspects of the powertrains system. This paper aims to define the impact of the changing environment, through a flight profile of an aircraft, on high density electronic cooling systems by assessing the potential system stressors that significantly impact performance, efficiency, and reliability of the cooling systems. It will also utilize local cooling efforts for motors to relate the general problems to applicable design considerations that must be understood to further the performance capability of the overall propulsion system.

Aerospace ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Hagen Kellermann ◽  
Michael Lüdemann ◽  
Markus Pohl ◽  
Mirko Hornung

Ram air-based thermal management systems (TMS) are investigated herein for the cooling of future hybrid-electric aircraft. The developed TMS model consists of all components required to estimate the impacts of mass, drag, and fuel burn on the aircraft, including the heat exchangers, coldplates, ducts, pumps, and fans. To gain a better understanding of the TMS, one- and multi-dimensional system sensitivity analyses were conducted. The observations were used to aid with the numerical optimization of a ram air-based TMS towards the minimum fuel burn of a 180-passenger short-range turboelectric aircraft with a power split of up to 30% electric power. The TMS was designed for the conditions at the top of the climb. For an aircraft with the maximum power split, the additional fuel burn caused by the TMS is 0.19%. Conditions occurring at a hot-day takeoff represent the most challenging off-design conditions for TMS. Steady-state cooling of all electric components with the designed TMS is possible during a hot-day takeoff if a small puller fan is utilized. Omitting the puller fan and instead oversizing the TMS is an alternative, but the fuel burn increase on the aircraft level grows to 0.29%.


2018 ◽  
Vol 171 ◽  
pp. 02003
Author(s):  
Ibrahim Mjallal ◽  
Hussein Farhat ◽  
Mohammad Hammoud ◽  
Samer Ali ◽  
Ali AL Shaer ◽  
...  

Existing passive cooling solutions limit the short-term thermal output of systems, thereby either limiting instantaneous performance or requiring active cooling solutions. As the temperature of the electronic devices increases, their failure rate increases. That’s why electrical devices should be cooled. Conventional electronic cooling systems usually consist of a metal heat sink coupled to a fan. This paper compares the heat distribution on a heat sink relative to different heat fluxes produced by electronic chips. The benefit of adding a fan is also investigated when high levels of heat generation are expected.


Author(s):  
Philip C. Abolmoali ◽  
Adam B. Donovan ◽  
Soumya S. Patnaik ◽  
Patrick McCarthy ◽  
Dominic Dierker ◽  
...  

2021 ◽  
Vol 2116 (1) ◽  
pp. 012054
Author(s):  
T Donepudi ◽  
A V Korobko ◽  
J W R Peeters ◽  
S Fateh

Abstract Rapid advancements in technology have led to the miniaturization of electronic devices which typically dissipate heat fluxes in the order of 100 W/cm2. This has brought about an unprecedented challenge to develop efficient and reliable thermal management systems. Novel cooling technologies such as Two-Phase Thermosyphons that make use of nanofluids provide a promising alternative to the use of conventional systems. This article analytically estimates the effects caused by nanoparticles that deposit on the evaporator surface and their effect on the heat transfer process.


2007 ◽  
Vol 6 (2) ◽  
pp. 34 ◽  
Author(s):  
G. Ribatski ◽  
L. Cabezas-Gómez ◽  
H. A. Navarro ◽  
J. M. Saíz-Jabardo

In this paper, the importance of the development of new high power density thermal management systems for electronic devices is assessed. It is described the new heat sink technologies under development to be used in the cooling of microprocessors. The main difficulties to be overcome before the spreading of one specific heat sink configuration are identified. At the end, it is concluded that a heat sink based on flow boiling in micro-scale channels is the most promising approach.


Sign in / Sign up

Export Citation Format

Share Document