scholarly journals Static Var Compensators to Stabilize Voltages in Weak Power Systems

Author(s):  
Gerard Philpott ◽  
Bill Lockley

Large horsepower motors on weak power systems cause problems associated with excessive voltage drops. The voltage drops may be steady state caused by heavy system loading or they may be transient caused by starting a large motor. One way to solve the problems is to use a Static Var Compensator (SVC) on the power system, to compensate for the reactive loads and stabilize the voltage on the utility and in the station. SVCs have been used for years by electric utilities and are now being used for some industrial applications. This paper gives an overview of the technology and describes a pipeline application.

Author(s):  
Nikolay Djagarov ◽  
Zhivko Grozdev ◽  
Milen Bonev

Improvement the work effectivenes of static var compensators by using of two-input adaptive controllersIn the paper is suggested a two-input adaptive controller for control of static var compensator (SVC). The controlling system of adaptive controller is identifying in real time of the basis for estimated parameters and variables of identification model and after that controlling signal is created for the compensator. As result of this controlling is improving vastly damping of power system like all performances as in transient processes as in steady state mode are improved.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


2020 ◽  
pp. 37-46
Author(s):  
B. Ayuev ◽  
V. Davydov ◽  
P. Erokhin ◽  
V. Neuymin ◽  
A. Pazderin

Steady-state equations play a fundamental role in the theory of power systems and computation practice. These equations are directly or mediately used almost in all areas of the power system state theory, constituting its basis. This two-part study deals with a geometrical interpretation of steady-state solutions in a power space. Part I considers steady states of the power system as a surface in the power space. A power flow feasibility region is shown to be widely used in power system theories. This region is a projection of this surface along the axis of a slack bus active power onto a subspace of other buses power. The findings have revealed that the obtained power flow feasibility regions, as well as marginal states of the power system, depend on a slack bus location. Part II is devoted to an analytical study of the power surface of power system steady states.


Author(s):  
Kwabena Addo Pambour ◽  
Burcin Cakir Erdener ◽  
Ricardo Bolado-Lavin ◽  
Gerard P. J. Dijkema

Gas and power networks are tightly coupled and interact with each other due to physically interconnected facilities. In an integrated gas and power network, a contingency observed in one system may cause iterative cascading failures, resulting in network wide disruptions. Therefore, understanding the impacts of the interactions in both systems is crucial for governments, system operators, regulators and operational planners, particularly, to ensure security of supply for the overall energy system. Although simulation has been widely used in the assessment of gas systems as well as power systems, there is a significant gap in simulation models that are able to address the coupling of both systems. In this paper, a simulation framework that models and simulates the gas and power network in an integrated manner is proposed. The framework consist of a transient model for the gas system and a steady state model for the power system based on AC-Optimal Power Flow. The gas and power system model are coupled through an interface which uses the coupling equations to establish the data exchange and coordination between the individual models. The bidirectional interlink between both systems considered in this studies are the fuel gas offtake of gas fired power plants for power generation and the power supply to LNG terminals and electric drivers installed in gas compressor stations and underground gas storage facilities. The simulation framework is implemented into an innovative simulation tool named SAInt (Scenario Analysis Interface for Energy Systems) and the capabilities of the tool are demonstrated by performing a contingency analysis for a real world example. Results indicate how a disruption triggered in one system propagates to the other system and affects the operation of critical facilities. In addition, the studies show the importance of using transient gas models for security of supply studies instead of successions of steady state models, where the time evolution of the line pack is not captured correctly.


Author(s):  
Fredy Estuardo Tamayo Guzmán ◽  
Carlos Andrés Barrera-Singaña

Electrical power systems are exposed to several events that can cause unstable operation scenarios. This is due to improper operation of certain components. If an event occurs, the system must be designed to overcome that contingency, thus remaining in a permanent condition that must be evaluated in order to monitor and prevent a possible collapse of the system. An evaluation of steady state stability is proposed at this work based on the capacity curves of generators, transformers and transmission lines. These remarked curves provide information on the operation point of these elements, thus allowing the application of remedial actions. PowerFactory and Matlab are used to carry out the tool for monitoring the operation points after a contingency. The effectiveness of the developed tool is validated at the IEEE 39-bus power system model, where results shows that the functionalaty for different contingencies based on the operating conditions when the components of the power system are varied, cosnquently, the tool identifies cases that require actions at the operational level.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4826
Author(s):  
Steffen Meinecke ◽  
Leon Thurner ◽  
Martin Braun

Publicly available grid datasets with electric steady-state equivalent circuit models are crucial for the development and comparison of a variety of power system simulation tools and algorithms. Such algorithms are essential to analyze and improve the integration of distributed energy resources (DERs) in electrical power systems. Increased penetration of DERs, new technologies, and changing regulatory frameworks require the continuous development of the grid infrastructure. As a result, the number and versatility of grid datasets, which are required in power system research, increases. Furthermore, the used grids are created by different methods and intentions. This paper gives orientation within these developments: First, a concise overview of well-known, publicly available grid datasets is provided. Second, background information on the compilation of the grid datasets, including different methods, intentions and data origins, is reviewed and characterized. Third, common terms to describe electric steady-state distribution grids, such as representative grid or benchmark grid, are assembled and reviewed. Recommendations for the use of these grid terms are made.


Author(s):  
Shilpi Bhattacharya ◽  
Prabal Deb ◽  
Sujit K Biswas ◽  
Ambarnath Banerjee

<p>This paper proposes a reduced switch Open-Delta (OD-VSC) voltage controller for an standalone asynchronous generator (SAG), also known as the self-excited induction generator (SEIG),used in constant power applications such as pico hydro uncontrolled turbine driven isolated induction generator (IAG) for feeding three-phase loads. The proposed reduced switch voltage controller is used to regulate and control the generator terminal voltage as it is subjected to voltage drops, dips or flickers when the isolated power system is subjected to various critical loads. Generally this purpose is carried out by a STATCOM comprising of a three-leg six-switch inverter structure. Here, in this work the DSTATCOM is realized using a three-leg four-switch insulated gate bipolar transistor (IGBT)-based current controlled voltage-sourced converter (CC-VSC) and a self-supporting dc bus containing two split capacitors. The proposed generating system along with the controller is modeled and simulated in MATLAB along with Simulink and power system blockset (PSB) toolboxes. The system is simulated and the capability of the isolated generating system along with the reduced switch based voltage controller is presented here where the generator feeds linear and non-linear loads are investigated.</p>


2018 ◽  
Vol 19 (6) ◽  
pp. 452-457
Author(s):  
Kamil Hebda ◽  
Marta Żurek-Mortka ◽  
Renata Repeć

Implementation of dynamic energy storage technology and its integration with the power system represents another important step in the development of the energy sector. This article discusses the advancement of superconducting energy storage technologies and the possibilities of their use in power engineering as well as other branches of industry. It also presents the perspective of applications of superconducting energy storage type SMES (Superconducting Magnetic Energy Storage) both for commercial and industrial applications and their impact on power grid. The article analyzes the functions that systems can use with the use of a superconductor in the power system. The functionality of SMES systems has been analyzed in particular from the point of view of its use in railways.


Sign in / Sign up

Export Citation Format

Share Document