Validation of EMAT Technology for Gas Pipeline Crack Inspection

Author(s):  
Richard Kania ◽  
Stefan Klein ◽  
Jim Marr ◽  
Gabriela Rosca ◽  
Elvis SanJuan Riverol ◽  
...  

The use of the Electro-Magnetic Acoustical Transducer (EMAT) technology for crack detection by In-Line Inspection (ILI) tools has increased over the last few years. Rigorous validation of the technology leading from the initial application of EMAT inline inspection tools through to determining Probability of Detection (POD) and Identification (POI) has contributed to improved confidence and reliability. EMAT results are being utilized to determine SCC valve section severity, to review and modify hydrostatic test schedules and intervals and could potentially be implemented as a viable alternative to hydrostatic testing. This paper describes the development of an EMAT ILI based program and the related validation process applied by the vendor, pipeline operator and in-ditch personnel. This process is illustrated by demonstrating the performance of the EMAT tool in two 20″ diameter natural gas pipelines which have a documented history of SCC. The tool identified hundreds of features in the two pipelines which were validated both in the ditch and via detailed anomaly sizing.

Author(s):  
Toby Fore ◽  
Stefan Klein ◽  
Chris Yoxall ◽  
Stan Cone

Managing the threat of Stress Corrosion Cracking (SCC) in natural gas pipelines continues to be an area of focus for many operating companies with potentially susceptible pipelines. This paper describes the validation process of the high-resolution Electro-Magnetic Acoustical Transducer (EMAT) In-Line Inspection (ILI) technology for detection of SCC prior to scheduled pressure tests of inspected line pipe valve sections. The validation of the EMAT technology covered the application of high-resolution EMAT ILI and determining the Probability Of Detection (POD) and Identification (POI). The ILI verification process is in accordance to a API 1163 Level 3 validation. It is described in detail for 30″ and 36″ pipeline segments. Both segments are known to have an SCC history. Correlation of EMAT ILI calls to manual non-destructive measurements and destructively tested SCC samples lead to a comprehensive understanding of the capabilities of the EMAT technology and the associated process for managing the SCC threat. Based on the data gathered, the dimensional tool tolerances in terms of length and depth are derived.


Author(s):  
Jake Phlipot ◽  
Stephen Rapp ◽  
Daniel Whaley ◽  
Kevin Spencer ◽  
Dan Williams

Abstract Pipeline operators rely on a variety of tools and technologies to manage threats to their pipeline assets. For natural gas pipelines, the management of Stress Corrosion Cracking (SCC) has benefited from the introduction and evolution of in-line inspection (ILI) technologies, specifically Electro-Magnetic Acoustic Transducer (EMAT) technology, that can reliably detect, identify and size cracking anomalies. Since its introduction in the early 2000’s, the performance of EMAT technology has been evaluated and documented through many industry research projects and published articles that describe operational experiences. This paper builds upon that body of shared knowledge to provide an update of observed EMAT performance on a gas transmission system that has undergone extensive EMAT ILI assessments, on a large number of pipeline segments, with a specific focus on the practical strategies employed to overcome the challenges unique to EMAT ILI validation. Practical insights into effectively using EMAT ILI validated data as a key input to the SCC management plan are thereby provided.


Author(s):  
S. Zhang ◽  
W. Zhou ◽  
S. Kariyawasam ◽  
T. Huang

This paper investigates the optimal timing of the first inspection for newly-built onshore underground natural gas pipelines with respect to external metal-loss corrosion by considering the generation of corrosion defects over time and time-dependent growth of individual defects. The non-homogeneous Poisson process is used to model the generation of new defects and the homogeneous gamma process is used to model the growth of individual defects. A realistic maintenance strategy that is consistent with the industry practice and accounts for the probability of detection (PoD) and sizing errors of the inspection tool is incorporated in the investigation. Both the direct and indirect costs of failure are considered. A simulation-based approach is developed to numerically evaluate the expected cost rate at a given inspection interval. The optimal inspection interval is determined based on either the cost criterion or the safety criterion. An example gas pipeline is used to examine the impact of the cost of failure, PoD, and the excavation and repair criteria on the optimal inspection interval through parametric analyses. The results of investigation will assist engineers in making the optimal maintenance decision for corroding natural gas pipelines and facilitate the reliability-based corrosion management.


Author(s):  
Aleksandar Tomic ◽  
Shahani Kariyawasam

A lethality zone due to an ignited natural gas release is often used to characterize the consequences of a pipeline rupture. A 1% lethality zone defines a zone where the lethality to a human is greater than or equal to 1%. The boundary of the zone is defined by the distance (from the point of rupture) at which the probability of lethality is 1%. Currently in the gas pipeline industry, the most detailed and validated method for calculating this zone is embodied in the PIPESAFE software. PIPESAFE is a software tool developed by a joint industry group for undertaking quantitative risk assessments of natural gas pipelines. PIPESAFE consequence models have been verified in laboratory experiments, full scale tests, and actual failures, and have been extensively used over the past 10–15 years for quantitative risk calculations. The primary advantage of using PIPESAFE is it allows for accurate estimation of the likelihood of lethality inside the impacted zone (i.e. receptors such as structures closer to the failure are subject to appropriately higher lethality percentages). Potential Impact Radius (PIR) is defined as the zone in which the extent of property damage and serious or fatal injury would be expected to be significant. It corresponds to the 1% lethality zone for a natural gas pipeline of a certain diameter and pressure when thermal radiation and exposure are taken into account. PIR is one of the two methods used to identify HCAs in US (49 CFR 192.903). Since PIR is a widely used parameter and given that it can be interpreted to delineate a 1% lethality zone, it is important to understand how PIR compares to the more accurate estimation of the lethality zones for different diameters and operating pressures. In previous internal studies, it was found that PIR, when compared to the more detailed measures of the 1% lethality zone, could be highly conservative. This conservatism could be beneficial from a safety perspective, however it is adding additional costs and reducing the efficiency of the integrity management process. Therefore, the goal of this study is to determine when PIR is overly conservative and to determine a way to address this conservatism. In order to assess its accuracy, PIR was compared to a more accurate measure of the 1% lethality zone, calculated by PIPESAFE, for a range of different operating pressures and line diameters. Upon comparison of the distances calculated through the application of PIR and PIPESAFE, it was observed that for large diameters pipelines the distances calculated by PIR are slightly conservative, and that this conservativeness increases exponentially for smaller diameter lines. The explanation for the conservatism of the PIR for small diameter pipelines is the higher wall friction forces per volume transported in smaller diameter lines. When these higher friction forces are not accounted for it leads to overestimation of the effective outflow rate (a product of the initial flow rate and the decay factor) which subsequently leads to the overestimation of the impact radius. Since the effective outflow rate is a function of both line pressure and diameter, a simple relationship is proposed to make the decay factor a function of these two variables to correct the excess conservatism for small diameter pipelines.


Author(s):  
Amir Ahmadipur ◽  
Alexander McKenzie-Johnson ◽  
Ali Ebrahimi ◽  
Anthony H. Rice

Abstract This paper presents a case study of a landslide with the potential to affect four operating high-pressure natural gas pipelines located in the south-central US state of Mississippi. This case study follows a landslide hazard management process: beginning with landslide identification, through pipeline monitoring using strain gauges with an automated early alert system, to detection of landslide movement and its effects on the pipeline, completion of a geotechnical subsurface investigation, conceptual geotechnical mitigation planning, landslide stabilization design and construction, and stress relief excavation. Each step of the landslide hazard management process is described in this case study.


Author(s):  
Cuiwei Liu ◽  
Yuxing Li ◽  
Qihui Hu ◽  
Wuchang Wang ◽  
Yazhen Wang ◽  
...  

Natural gas is a vital energy carrier which can serve as an energy source, which is extremely vulnerable to leakages from pipeline transportation systems. The required ignition energy is low. Although the safety of natural gas pipelines has been improved, the average economic loss of natural gas accidents, including leaks, is large. To solve these problems, an acoustic leak localization system is designed and researched for gas pipelines using experiments with methods proposed according to different application situations. The traditional method with two sensors installed at both ends can be improved by a newly proposed combined signal-processing method, which is applied for the case that it is necessary to calculate the time differences with data synchronicity. When the time differences cannot be calculated accurately, a new method based on the amplitude attenuation model is proposed. Using these methods, the system can be applied to most situations. Next, an experimental facility at the laboratory scale is established, and experiments are carried out. Finally, the methods are verified and applied for leak localization. The results show that this research can provide a foundation for the proposed methods. The maximum experimental leak localization errors for the methods are −0.592%, and −7.62%. It is concluded that the system with the new methods can be applied to protect and monitor natural gas pipelines.


Sign in / Sign up

Export Citation Format

Share Document