Do We Need a Safe Excavation Pressure for Dented Pipelines: How Should it Be Defined?

Author(s):  
Muntaseer Kainat ◽  
Doug Langer ◽  
Sherif Hassanien

Pipeline operators’ utmost priority is to achieve high safety measures during the lifecycle of pipelines including effective management of integrity threats during excavation and repair processes. A single incident pertaining to a mechanical damage in a gas pipeline has been reported previously which resulted in one fatality and one injury during investigation. Some operators have reported leaking cracks while investigating rock induced dents. Excavation under full operating pressure can lead to changes in boundary conditions and unexpected loads, resulting in failure, injuries, or fatalities. In the meantime, lowering operating pressure during excavation can have a significant impact on production and operational availability. The situation poses two conflicting objectives; namely, maximizing safety and maximizing operational availability. Current pipeline regulations require that operators have to ensure safe working conditions by depressurizing the line to a level that will not cause a failure during the repair process. However, there are no detailed guidelines on how an operator should determine a safe excavation pressure (SEP) level, which could lead to engineering judgment and subjectivity in determining such safety level. While the pipeline industry relies on well-defined fitness for purpose analyses for threats such as crack and corrosion, there is a gap in defining a fitness for purpose for dents and dents associated with stress riser features in order to set an SEP. Stress and strain based assessment of dents can be used in this matter; however, it requires advanced techniques to account for geometric and material nonlinearity. Additionally, loading and unloading scenarios during excavation (e.g. removal of indenter, overburden pressure, etc.) drive a change in the boundary conditions of the pipe that could lead to leakage. Nevertheless, crack initiation or presence within a dent should be considered, which requires the incorporation of crack geometry and application of fracture mechanics in assessing a safe excavation pressure. Recently, there have been advancements in stress and strain based finite element analysis (FEA) of dents coupled with structural reliability analysis that can be utilized to assess SEP. This paper presents a reliability-based approach to determine a safe excavation pressure for dented liquid pipelines. The approach employs nonlinear FEA to model dents interacting with crack features coupled with uncertainties associated with pipe properties and in-line-inspection information. A fracture mechanics-based limit state is formulated to estimate the probability of failure of dents associated with cracks at different levels of operating pressure during excavation. The application of the developed approach is demonstrated through examples within limited scope. Recommended enhancements and future developments of the proposed approach are also discussed.

Author(s):  
Xiaolin Wang ◽  
Jian Shuai ◽  
Xiaomin Guo

River-crossing pipeline is threatened by flood which could induce pipeline being eroded and exposed, moreover, floating in a large scale. Under the combined effects of dynamic wave, buoyancy, gravity and resistance of bank soil, pipeline presents spatial deformation. A mechanical analysis model is built according to loadings on pipeline and deformation of pipeline. Taking into account nonlinear soil-pipe interaction, axial force, nonlinear material property of pipeline steel and spacial deformation of pipeline, an analytical methodology for evaluating pipeline deformation and stress distribution is developed. Compatibility equation of pipeline physical elongation and geometrical elongation is derived, by which pipeline stress and strain are calculated with iterative method. Based on proposed methodology, a computer program is developed and a series of cases of pipeline in flood are analyzed with it. Compared with finite element analysis, results of proposed methodology are well accepted. Finally, safety assessment method for pipeline in flood is proposed based on limit state theory and the safety of pipeline exposed in mountain torrent are evaluated.


Author(s):  
Michael Gardiner ◽  
Ross Michie ◽  
Gerardo Douce

Metrogas SA operates a natural gas distribution concession within the Greater Buenos Aires region of Argentina. In August 2007 a failure occurred on a section of the 22-bar system that dates from the early 1960s and, as such, was ‘inherited’ by Metrogas at privatization. The line pipe in this part of the system is spirally welded and at the failure point the spiral weld root was found to have been incomplete. Subsequent investigations showed that incomplete spiral welds were also present at other locations in the same section of the system. This paper describes some of the steps taken to investigate the incident of 2007 and to manage the threat from other defective spiral welds in the same pipeline section. We present a limit state model for through-wall failure of such features and show how this was used to help understand the incident. We also discuss modeling of uncertainties in parameters of the model and look at results from a probabilistic structural reliability implementation of the limit state function, which allowed the failure frequency of other defective spiral welds in this section to be predicted for various reductions of the operating pressure. Metrogas was then able to use these quantified reliability data to make a responsible, informed decision to keep the affected section in downrated service.


2011 ◽  
Vol 71-78 ◽  
pp. 3443-3447
Author(s):  
Wei Ping Peng ◽  
Yan Ting Huang ◽  
Dao Ming Wang

Universal-rod steel-shuttering jumbo (URSSJ), as a key construction equipment for tailrace tunnel lining of underground plant in Pubugou hydropower station, has a good reusability in structure but must satisfy the requirements of intensity, rigidity and supporting stability. Due to complicated working conditions of the URSSJ, it is difficult to calculate stress and strain of the URSSJ based on traditional design method. In this paper, finite element technology is introduced into the analysis of the URSSJ. The approach of this work includes steps of (1) analyzing the structure, working conditions and load characteristics of the URSSJ, (2) modeling the hinge system by meshing, loading and boundary constraints, and (3) computing stress and strain of its major components under the most dangerous condition. The results verify design feasibility and structural reliability of the URSSJ.


2011 ◽  
Vol 201-203 ◽  
pp. 44-48
Author(s):  
Xin Zhou Zhang ◽  
Shang Bin Wang ◽  
Kai Wu ◽  
Yu Sun

The structural characteristics of a laminating press were analyzed, and the corresponding finite element model was built with some essential simplification. By structural analysis, the distributions of stress and strain were obtained, based on which the rationality of the frame design can be verified. According to the complex structure and loading conditions of the laminating press, four analytical schemes with different models and boundary conditions were adopted, then the results of different analytical schemes were compared, and the causes resulting in the calculation differences were analyzed. The result shows that in analyzing different parts of the laminating press frame, different models and boundary conditions were required.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1388
Author(s):  
Daniele Oboe ◽  
Luca Colombo ◽  
Claudio Sbarufatti ◽  
Marco Giglio

The inverse Finite Element Method (iFEM) is receiving more attention for shape sensing due to its independence from the material properties and the external load. However, a proper definition of the model geometry with its boundary conditions is required, together with the acquisition of the structure’s strain field with optimized sensor networks. The iFEM model definition is not trivial in the case of complex structures, in particular, if sensors are not applied on the whole structure allowing just a partial definition of the input strain field. To overcome this issue, this research proposes a simplified iFEM model in which the geometrical complexity is reduced and boundary conditions are tuned with the superimposition of the effects to behave as the real structure. The procedure is assessed for a complex aeronautical structure, where the reference displacement field is first computed in a numerical framework with input strains coming from a direct finite element analysis, confirming the effectiveness of the iFEM based on a simplified geometry. Finally, the model is fed with experimentally acquired strain measurements and the performance of the method is assessed in presence of a high level of uncertainty.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2590
Author(s):  
Che-Yu Lin ◽  
Ke-Vin Chang

Most biomaterials and tissues are viscoelastic; thus, evaluating viscoelastic properties is important for numerous biomedical applications. Compressional viscoelastography is an ultrasound imaging technique used for measuring the viscoelastic properties of biomaterials and tissues. It analyzes the creep behavior of a material under an external mechanical compression. The aim of this study is to use finite element analysis to investigate how loading conditions (the distribution of the applied compressional pressure on the surface of the sample) and boundary conditions (the fixation method used to stabilize the sample) can affect the measurement accuracy of compressional viscoelastography. The results show that loading and boundary conditions in computational simulations of compressional viscoelastography can severely affect the measurement accuracy of the viscoelastic properties of materials. The measurement can only be accurate if the compressional pressure is exerted on the entire top surface of the sample, as well as if the bottom of the sample is fixed only along the vertical direction. These findings imply that, in an experimental validation study, the phantom design should take into account that the surface area of the pressure plate must be equal to or larger than that of the top surface of the sample, and the sample should be placed directly on the testing platform without any fixation (such as a sample container). The findings indicate that when applying compressional viscoelastography to real tissues in vivo, consideration should be given to the representative loading and boundary conditions. The findings of the present simulation study will provide a reference for experimental phantom designs regarding loading and boundary conditions, as well as guidance towards validating the experimental results of compressional viscoelastography.


Author(s):  
Steven J. Polasik ◽  
Carl E. Jaske

Pipeline operators must rely on fatigue crack growth models to evaluate the effects of operating pressure acting on flaws within the longitudinal seam to set re-assessment intervals. In most cases, many of the critical parameters in these models are unknown and must be assumed. As such, estimated remaining lives can be overly conservative, potentially leading to unrealistic and short reassessment intervals. This paper describes the fatigue crack growth methodology utilized by Det Norske Veritas (USA), Inc. (DNV), which is based on established fracture mechanics principles. DNV uses the fracture mechanics model in CorLAS™ to calculate stress intensity factors using the elastic portion of the J-integral for either an elliptically or rectangularly shaped surface crack profile. Various correction factors are used to account for key variables, such as strain hardening rate and bulging. The validity of the stress intensity factor calculations utilized and the effect of modifying some key parameters are discussed and demonstrated against available data from the published literature.


Sign in / Sign up

Export Citation Format

Share Document