Microstructure Comparison Using Dissimilarity Metric for Additive Manufacturing of Metals

Author(s):  
Umar Farooq Ghumman ◽  
Sourav Saha ◽  
Lichao Fang ◽  
Wing Kam Liu ◽  
Gregory Wagner ◽  
...  

Abstract Additive Manufacturing (AM) simulations are often employed to replace the expensive experiments to study the effects of processing conditions. In process modeling, one of the key limitations is the lack of reliable validation techniques. The stochastic nature and the spatial heterogeneity of microstructures make it difficult to validate the simulated microstructures against experimentally obtained images through statistical measures (e.g. average and standard deviation of grain sizes). In this work, a validation metric is proposed that can effectively quantify the dissimilarity between two AM microstructures. The methodology involves first calculating the Angularly Resolved Chord Length Distribution (ARCLD) at representative angles and then computing the Earth Mover’s Distance (EMD) to obtain the final unitless score that is named Dissimilarity Score (DS). The efficacy of the proposed methodology was first tested on synthetic microstructures, and then on AM simulations that employ the solidification model-Cellular Automaton (CA) with IN625. Results show that DS effectively measures the dissimilarity between different microstructures. The use of DS is also extended to calibrate the CA processing simulation code to match with experimental AM images from NIST AM-Bench Challenge.

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2173
Author(s):  
Mareike Thiedeitz ◽  
Inka Dressler ◽  
Thomas Kränkel ◽  
Christoph Gehlen ◽  
Dirk Lowke

Cementitious pastes are multiphase suspensions that are rheologically characterized by viscosity and yield stress. They tend to flocculate during rest due to attractive interparticle forces, and desagglomerate when shear is induced. The shear history, e.g., mixing energy and time, determines the apparent state of flocculation and accordingly the particle size distribution of the cement in the suspension, which itself affects suspension’s plastic viscosity and yield stress. Thus, it is crucial to understand the effect of the mixing procedure of cementitious suspensions before starting rheological measurements. However, the measurement of the in-situ particle agglomeration status is difficult, due to rapidly changing particle network structuration. The focused beam reflectance measurement (FBRM) technique offers an opportunity for the in-situ investigation of the chord length distribution. This enables to detect the state of flocculation of the particles during shear. Cementitious pastes differing in their solid fraction and superplasticizer content were analyzed after various pre-shear histories, i.e., mixing times. Yield stress and viscosity were measured in a parallel-plate-rheometer and related to in-situ measurements of the chord length distribution with the FBRM-probe to characterize the agglomeration status. With increasing mixing time agglomerates were increasingly broken up in dependence of pre-shear: After 300 s of pre-shear the agglomerate sizes decreased by 10 µm to 15 µm compared to a 30 s pre-shear. At the same time dynamic yield stress and viscosity decreased up to 30% until a state of equilibrium was almost reached. The investigations show a correlation between mean chord length and the corresponding rheological parameters affected by the duration of pre-shear.


2010 ◽  
Vol 42 (1) ◽  
pp. 48-68 ◽  
Author(s):  
L. Muche

In this paper we present formulae for contact distributions of a Voronoi tessellation generated by a homogeneous Poisson point process in the d-dimensional Euclidean space. Expressions are given for the probability density functions and moments of the linear and spherical contact distributions. They are double and simple integral formulae, which are tractable for numerical evaluation and for large d. The special cases d = 2 and d = 3 are investigated in detail, while, for d = 3, the moments of the spherical contact distribution function are expressed by standard functions. Also, the closely related chord length distribution functions are considered.


2008 ◽  
Vol 40 (04) ◽  
pp. 919-938 ◽  
Author(s):  
Kasra Alishahi ◽  
Mohsen Sharifitabar

This paper is devoted to the study of some asymptotic behaviors of Poisson-Voronoi tessellation in the Euclidean space as the space dimension tends to ∞. We consider a family of homogeneous Poisson-Voronoi tessellations with constant intensity λ in Euclidean spaces of dimensions n = 1, 2, 3, …. First we use the Blaschke-Petkantschin formula to prove that the variance of the volume of the typical cell tends to 0 exponentially in dimension. It is also shown that the volume of intersection of the typical cell with the co-centered ball of volume u converges in distribution to the constant λ−1(1 − e−λu ). Next we consider the linear contact distribution function of the Poisson-Voronoi tessellation and compute the limit when the space dimension goes to ∞. As a by-product, the chord length distribution and the geometric covariogram of the typical cell are obtained in the limit.


2020 ◽  
Vol 76 (4) ◽  
pp. 474-488
Author(s):  
Salvino Ciccariello

The chord-length distribution function [γ′′(r)] of any bounded polyhedron has a closed analytic expression which changes in the different subdomains of the r range. In each of these, the γ′′(r) expression only involves, as transcendental contributions, inverse trigonometric functions of argument equal to R[r, Δ1], Δ1 being the square root of a second-degree r polynomial and R[x, y] a rational function. As r approaches δ, one of the two end points of an r subdomain, the derivative of γ′′(r) can only show singularities of the forms |r − δ|−n and |r − δ|−m+1/2, with n and m appropriate positive integers. Finally, the explicit analytic expressions of the primitives are also reported.


2019 ◽  
Vol 809 ◽  
pp. 386-391 ◽  
Author(s):  
Patrick Striemann ◽  
Daniel Hülsbusch ◽  
Michael Niedermeier ◽  
Frank Walther

Generating serial components via additive manufacturing (AM) a deep understanding of process-related characteristics is necessary. The extrusion-based AM called fused layer manufacturing (FLM), also known as fused deposition modeling (FDM™) or fused filament fabrication (FFF) is an AM process for producing serial components. Improving mechanical properties of AM parts is done by adding fibers in the raw material to reinforce the polymer. The study aims to create a more detailed comprehension of FLM and process-related characteristics with their influence on the composite.Thereby, a short carbon fiber-reinforced polyamide (CarbonX™ Nylon, 3DXTECH, USA) with 12.5 wt.‑% fiber content, 7 μm fiber diameter, and 150 to 400 µm fiber length distribution was investigated. To separate process-related characteristics of FLM, reference specimens were fabricated via injection molding (IM) with single-batch material. For the mechanical characterization, quasi-static tensile tests were carried out in accordance to DIN 527‑2. Quality assessment including void content and void distribution was performed via micro-computed tomography (CT).The mechanical characterization clarifies effects on mechanical properties depending on process-related characteristics of FLM. CT scans show higher void contents of FLM specimens compared to IM specimens and void orientation dependent on printing direction. FLM shows process-related characteristics which generally strengthen mechanical properties of polymers. Nevertheless, tensile strength of FLM specimens decrease by more than 28% compared to quasi-homogenous IM specimens.


1998 ◽  
Vol 30 (03) ◽  
pp. 603-618 ◽  
Author(s):  
Lothar Heinrich

We give formulae for different types of contact distribution functions for stationary (not necessarily Poisson) Voronoi tessellations in ℝ d in terms of the Palm void probabilities of the generating point process. Moreover, using the well-known relationship between the linear contact distribution and the chord length distribution we derive a closed form expression for the mean chord length in terms of the two-point Palm distribution and the pair correlation function of the generating point process. The results obtained are specified for Voronoi tessellations generated by Poisson cluster and Gibbsian processes, respectively.


1998 ◽  
Vol 30 (3) ◽  
pp. 603-618 ◽  
Author(s):  
Lothar Heinrich

We give formulae for different types of contact distribution functions for stationary (not necessarily Poisson) Voronoi tessellations in ℝd in terms of the Palm void probabilities of the generating point process. Moreover, using the well-known relationship between the linear contact distribution and the chord length distribution we derive a closed form expression for the mean chord length in terms of the two-point Palm distribution and the pair correlation function of the generating point process. The results obtained are specified for Voronoi tessellations generated by Poisson cluster and Gibbsian processes, respectively.


Sign in / Sign up

Export Citation Format

Share Document