Effect of Vapor Lubrication on Head–Disk Clearance and Slider Wear in Inert Gas Environments

Author(s):  
Hiroshi Tani ◽  
Jun Tomita ◽  
Shinji Koganezawa ◽  
N. Tagawa

The application of dynamic flying height (DFH) control technology to hard disk drives (HDDs) reduces the clearance of the magnetic heads above the disk surface to a few nanometers. Further, such a small clearance distance sometimes causes wear of the diamond like carbon (DLC) overcoat on the slider surface at the head–disk interface (HDI) owing to contact with the disk surface. The wear mechanisms of the DLC overcoat are considered to be either mechanical wear or tribochemical wear (oxidation of carbon) [1]. Recently, a helium-filled HDD was developed to improve the storage capacity and power consumption of HDDs. In the helium-filled HDD, tribochemical wear does not occur because there is no oxygen in the HDD. In addition, there is no humidity (water vapor), which was found to affect wear at the HDI [2]. Therefore, it is important to understand the effect of humidity and an oxygen-free inert gas environment on slider wear.

Author(s):  
Rahul Rai ◽  
Abhishek Srivastava ◽  
Bernhard Knigge ◽  
Aravind N. Murthy

Abstract Recent growth in the cloud storage industry has created a massive demand for higher capacity hard disk drives (HDD). A sub-nanometer head media spacing (HMS) remains the most critical pre-requisite to achieve the areal density needed to deliver the next generation of HDD products. Designing a robust head-disk interface (HDI) with small physical clearance requires the understanding of slider dynamics, especially when the head flies in proximity to the disk surface. In this paper, we describe a method using the magnetic read-back signal to characterize the head fly-height modulations as it undergoes a transition from a free-flying state to soft contact with the disk surface. A technique based on the magnetic fly-height sensitivity is introduced for the identification of the transition plane that corresponds to the onset of the touchdown process. Additionally, the proposed magnetic spacing based meteorology is used to study the effect of the air bearing stiffness on the magnitude of the slider vibrations induced by intermittent head-disk interactions. The information about the minimum spacing while maintaining the stable flying conditions can help in reducing the head-disk interaction risk that can enable a low clearance interface.


Author(s):  
Rahul Rai ◽  
Puneet Bhargava ◽  
Bernhard Knigge ◽  
Aravind N. Murthy

Abstract Growth in the demand for higher capacity hard disk drives (HDD) has pushed the requirement for head-media spacing (HMS) to sub-nanometer levels. The drop in operational clearance makes a head-disk interface (HDI) more susceptible to potential head-wear and contamination related issues. Such degradation processes are often accompanied by a noticeable shift in the head-disk clearance. Hence monitoring an interface for a spacing change can be helpful in early detection of its imminent failure. In this paper, we present a method to detect the change in head-disk spacing using an embedded contact sensor (ECS). This technique involves the analysis of ECS dynamic response for an interface that is subjected to heater induced spacing modulations. As the head moves closer to the disk surface, the magnitude of the ECS frequency components can be used to determine the ‘characteristic spacing’ which can be used as a metric to detect any physical change for a given interface.


Author(s):  
Aravind N. Murthy ◽  
Remmelt Pit ◽  
Karl A. Flechsig

There is an inherent contact potential difference between the head and the disk surfaces in hard disk drives (HDD’s). Current HDD’s use thermal fly-height control (TFC) during read/write operations. In this study, we show a method to determine the contact potential for the head disk interface (HDI) using TFC technology. We utilize TFC to measure the flying height of the slider via touchdown power by applying a DC voltage bias to either the head or the disk or both. The DC voltage condition where the TFC clearance is maximized corresponds to the balancing of the HDI contact potential. In other words, the opposite polarity of that DC voltage bias condition is the HDI contact potential. Additionally, we show that the contact potential of HDI can be determined by either applying the DC voltage bias to the head or to the disk.


Author(s):  
Rohit P. Ambekar ◽  
David B. Bogy

The touchdown-takeoff velocity hysteresis observed in hard disk drives during CSS or L/UL tests is analyzed using an experimental approach. Tests similar to L/UL were conducted for different slider-disk combinations at different humidities. Factors affecting the touchdown and takeoff velocity were identified on the basis of their domain of operation. It is concluded that the intermolecular forces and meniscus forces are contributing factors to hysteresis, which is also influenced by disk topography and slider dynamics.


Author(s):  
Nan Liu ◽  
David B. Bogy

Simulation of particle motion in the Head Disk Interface (HDI) helps to understand the contamination process on a slider, which is critical for achieving higher areal density of hard disk drives. In this study, the boundary effect—the presence of the slider and disk—on particle motion in the HDI is investigated. A correction factor to account for this effect is incorporated into the drag force formula for particles in a flow. A contamination criterion is provided to determine when a particle will contaminate a slider. The contamination profile on a specific Air Bearing Surface is obtained, which compares well with experiments.


1999 ◽  
Vol 121 (4) ◽  
pp. 948-954 ◽  
Author(s):  
Yong Hu

A partial contact air bearing model and Archard’s wear law are used to investigate the air bearing and wear characteristics of proximity recording sliders during a take-off process. The air bearing pitch torque, pitch and contact force are used to characterize the contact take-off process. In addition, the wear factor derived from the Archard’s wear law is employed to measure the take-off performance. The results indicate the existence of two distinct take-off stages: a period of rapidly increasing pitch preceding a relatively steady take-off event. The proper range of taper angle and step height, which produce a rapid initial pitch increase and steady subsequent take-off as well as less wear in the head/disk interface, are determined through simulation. While the simulation results demonstrate the negligible effect of crown height on the rate of the initial pitch increase, larger crown values are shown to yield higher pitch and smaller wear in the head/disk interface during the take-off process. In summary, the partial contact air bearing simulation and the wear factor calculation of the take-off process, developed in this study, offers a fast and accurate analytical tool to optimize ABS design for the fast take-off performance.


Author(s):  
Aravind N. Murthy ◽  
Eric M. Jayson ◽  
Frank E. Talke

Most hard disk drives manufactured in the last few years have Load/Unload (L/UL) technology. As opposed to the Contact Start/Stop (CSS) technology, L/UL technology has the advantage of improved areal density because of more disk space availability and better shock performance. The latter characteristic has significant benefits during the non-operational state of the hard disk drive since head/disk interactions are eliminated and the head is parked on a ramp adjacent to the disk. However, even if head/disk interactions are absent, other failure modes may occur such as lift-tab damage and dimple separation leading to flexure damage. A number of investigations have been made to study the response of the head disk interface with respect to shock when the head is parked on the disk ([1], [2]). In this paper, we address the effect of non-operational shock for L/UL disk drives.


Sign in / Sign up

Export Citation Format

Share Document