Autonomous Navigation and Mapping for Mobile Robot in Unknown Environment Using Line Segments

Author(s):  
Chunlin Song ◽  
Cheng Chen ◽  
Naigang Cui

Used widely in military and civil applications, autonomous robots have shown promising in planet exploration, seabed survey, and disaster rescue. A lot of robotic research concentrates on localization and mapping dealing with the basic problems in robotic research: “Where I am?” and “How is the environment like?”. The two problems consist a coupled problem named Simultaneous Localization and Mapping (SLAM) in unknown environment exploration. This problem is summarized by Hugh D. Whyte in his paper published in 1991 [1]. Forced by requirement of motion in unknown environment, many researchers in robotics make efforts to solve SLAM problem in recent decades.

Author(s):  
Olusanya Agunbiade ◽  
Tranos Zuva

The important characteristic that could assist in autonomous navigation is the ability of a mobile robot to concurrently construct a map for an unknown environment and localize itself within the same environment. This computational problem is known as Simultaneous Localization and Mapping (SLAM). In literature, researchers have studied this approach extensively and have proposed a lot of improvement towards it. More so, we are experiencing a steady transition of this technology to industries. However, there are still setbacks limiting the full acceptance of this technology even though the research had been conducted over the last 30 years. Thus, to determine the problems facing SLAM, this paper conducted a review on various foundation and recent SLAM algorithms. Challenges and open issues alongside the research direction for this area were discussed. However, towards addressing the problem discussed, a novel SLAM technique will be proposed.


Author(s):  
Lee Gim Hee ◽  
◽  
Marcelo H. Ang Jr. ◽  

Global path planning algorithms are good in planning an optimal path in a known environment, but would fail in an unknown environment and when reacting to dynamic and unforeseen obstacles. Conversely, local navigation algorithms perform well in reacting to dynamic and unforeseen obstacles but are susceptible to local minima failures. A hybrid integration of both the global path planning and local navigation algorithms would allow a mobile robot to find an optimal path and react to any dynamic and unforeseen obstacles during an operation. However, the hybrid method requires the robot to possess full or partial prior information of the environment for path planning and would fail in a totally unknown environment. The integrated algorithm proposed and implemented in this paper incorporates an autonomous exploration technique into the hybrid method. The algorithm gives a mobile robot the ability to plan an optimal path and does online collision avoidance in a totally unknown environment.


2019 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
Dwiky Erlangga ◽  
Endang D ◽  
Rosalia H S ◽  
Sunarto Sunarto ◽  
Kuat Rahardjo T.S ◽  
...  

<p><em>Autonomous navigation is absolutely necessary in mobile-robotic, which consists of four main components, namely: perception, localization, path-planning, and motion-control. Mobile robots create maps of space so that they can carry out commands to move from one place to another using the autonomous-navigation method. Map making using the Simultaneous-Localization-and-Mapping (SLAM) algorithm that processes data from the RGB-D camera sensor and bumper converted to laser-scan and point-cloud is used to obtain perception. While the wheel-encoder and gyroscope are used to obtain odometry data which is used to construct travel maps with the SLAM algorithm, gmapping and performing autonomous navigation. The system consists of three sub-systems, namely: sensors as inputs, single-board computers for processes, and actuators as movers. Autonomous-navigation is regulated through the navigation-stack using the Adaptive-Monte-Carlo-Localization (AMCL) algorithm for localization and global-planning, while the Dynamic-Window-Approach (DWA) algorithm with Robot-Operating-System-(ROS) for local -planning. The results of the test show the system can provide depth-data that is converted to laser-scan, bumper data, and odometry data to single-board-computer-based ROS so that mobile-controlled teleoperating robots from workstations can build 2-dimensional grid maps with total accuracy error rate of 0.987%. By using maps, data from sensors, and odometry the mobile-robot can perform autonomous-navigation consistently and be able to do path-replanning, avoid static obstacles and continue to do localization to reach the destination point.</em></p>


2021 ◽  
Author(s):  
Salvador Ortiz ◽  
Wen Yu

In this paper, sliding mode control is combined with the classical simultaneous localization and mapping (SLAM) method. This combination can overcome the problem of bounded uncertainties in SLAM. With the help of genetic algorithm, our novel path planning method shows many advantages compared with other popular methods.


Author(s):  
Lorenzo Fernández Rojo ◽  
Luis Paya ◽  
Francisco Amoros ◽  
Oscar Reinoso

Mobile robots have extended to many different environments, where they have to move autonomously to fulfill an assigned task. With this aim, it is necessary that the robot builds a model of the environment and estimates its position using this model. These two problems are often faced simultaneously. This process is known as SLAM (simultaneous localization and mapping) and is very common since when a robot begins moving in a previously unknown environment it must start generating a model from the scratch while it estimates its position simultaneously. This chapter is focused on the use of computer vision to solve this problem. The main objective is to develop and test an algorithm to solve the SLAM problem using two sources of information: (1) the global appearance of omnidirectional images captured by a camera mounted on the mobile robot and (2) the robot internal odometry. A hybrid metric-topological approach is proposed to solve the SLAM problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Rodrigo Munguía ◽  
Carlos López-Franco ◽  
Emmanuel Nuño ◽  
Adriana López-Franco

This work presents a method for implementing a visual-based simultaneous localization and mapping (SLAM) system using omnidirectional vision data, with application to autonomous mobile robots. In SLAM, a mobile robot operates in an unknown environment using only on-board sensors to simultaneously build a map of its surroundings, which it uses to track its position. The SLAM is perhaps one of the most fundamental problems to solve in robotics to build mobile robots truly autonomous. The visual sensor used in this work is an omnidirectional vision sensor; this sensor provides a wide field of view which is advantageous in a mobile robot in an autonomous navigation task. Since the visual sensor used in this work is monocular, a method to recover the depth of the features is required. To estimate the unknown depth we propose a novel stochastic triangulation technique. The system proposed in this work can be applied to indoor or cluttered environments for performing visual-based navigation when GPS signal is not available. Experiments with synthetic and real data are presented in order to validate the proposal.


Author(s):  
Lorenzo Fernández Rojo ◽  
Luis Paya ◽  
Francisco Amoros ◽  
Oscar Reinoso

Nowadays, mobile robots have extended to many different environments, where they have to move autonomously to fulfill an assigned task. With this aim, it is necessary that the robot builds a model of the environment and estimates its position using this model. These two problems are often faced simultaneously. This process is known as SLAM (Simultaneous Localization and Mapping) and is very common since when a robot begins moving in a previously unknown environment it must start generating a model from the scratch while it estimates its position simultaneously. This work is focused on the use of computer vision to solve this problem. The main objective is to develop and test an algorithm to solve the SLAM problem using two sources of information: (a) the global appearance of omnidirectional images captured by a camera mounted on the mobile robot and (b) the robot internal odometry. A hybrid metric-topological approach is proposed to solve the SLAM problem.


Sign in / Sign up

Export Citation Format

Share Document