scholarly journals SISTEM NAVIGASI MOBILE ROBOT DALAM RUANGAN BERBASIS AUTONOMOUS NAVIGATION

2019 ◽  
Vol 4 (2) ◽  
pp. 78 ◽  
Author(s):  
Dwiky Erlangga ◽  
Endang D ◽  
Rosalia H S ◽  
Sunarto Sunarto ◽  
Kuat Rahardjo T.S ◽  
...  

<p><em>Autonomous navigation is absolutely necessary in mobile-robotic, which consists of four main components, namely: perception, localization, path-planning, and motion-control. Mobile robots create maps of space so that they can carry out commands to move from one place to another using the autonomous-navigation method. Map making using the Simultaneous-Localization-and-Mapping (SLAM) algorithm that processes data from the RGB-D camera sensor and bumper converted to laser-scan and point-cloud is used to obtain perception. While the wheel-encoder and gyroscope are used to obtain odometry data which is used to construct travel maps with the SLAM algorithm, gmapping and performing autonomous navigation. The system consists of three sub-systems, namely: sensors as inputs, single-board computers for processes, and actuators as movers. Autonomous-navigation is regulated through the navigation-stack using the Adaptive-Monte-Carlo-Localization (AMCL) algorithm for localization and global-planning, while the Dynamic-Window-Approach (DWA) algorithm with Robot-Operating-System-(ROS) for local -planning. The results of the test show the system can provide depth-data that is converted to laser-scan, bumper data, and odometry data to single-board-computer-based ROS so that mobile-controlled teleoperating robots from workstations can build 2-dimensional grid maps with total accuracy error rate of 0.987%. By using maps, data from sensors, and odometry the mobile-robot can perform autonomous-navigation consistently and be able to do path-replanning, avoid static obstacles and continue to do localization to reach the destination point.</em></p>

Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Meng-Yuan Chen ◽  
Yong-Jian Wu ◽  
Hongmei He

Abstract In this paper, we developed a new navigation system, called ATCM, which detects obstacles in a sliding window with an adaptive threshold clustering algorithm, classifies the detected obstacles with a decision tree, heuristically predicts potential collision and finds optimal path with a simplified Morphin algorithm. This system has the merits of optimal free-collision path, small memory size and less computing complexity, compared with the state of the arts in robot navigation. The modular design of 6-steps navigation provides a holistic methodology to implement and verify the performance of a robot’s navigation system. The experiments on simulation and a physical robot for the eight scenarios demonstrate that the robot can effectively and efficiently avoid potential collisions with any static or dynamic obstacles in its surrounding environment. Compared with the particle swarm optimisation, the dynamic window approach and the traditional Morphin algorithm for the autonomous navigation of a mobile robot in a static environment, ATCM achieved the shortest path with higher efficiency.


Robotica ◽  
2010 ◽  
Vol 29 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Fernando A. Auat Cheein ◽  
Fernando di Sciascio ◽  
Gustavo Scaglia ◽  
Ricardo Carelli

SUMMARYThis paper addresses the problem of a features selection criterion for a simultaneous localization and mapping (SLAM) algorithm implemented on a mobile robot. This SLAM algorithm is a sequential extended Kalman filter (EKF) implementation that extracts corners and lines from the environment. The selection procedure is made according to the convergence theorem of the EKF-based SLAM. Thus, only those features that contribute the most to the decreasing of the uncertainty ellipsoid volume of the SLAM system state will be chosen for the correction stage of the algorithm. The proposed features selection procedure restricts the number of features to be updated during the SLAM process, thus allowing real time implementations with non-reactive mobile robot navigation controllers. In addition, a Monte Carlo experiment is carried out in order to show the map reconstruction precision according to the Kullback–Leibler divergence curves. Consistency analysis of the proposed SLAM algorithm and experimental results in real environments are also shown in this work.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Inam Ullah ◽  
Xin Su ◽  
Xuewu Zhang ◽  
Dongmin Choi

For more than two decades, the issue of simultaneous localization and mapping (SLAM) has gained more attention from researchers and remains an influential topic in robotics. Currently, various algorithms of the mobile robot SLAM have been investigated. However, the probability-based mobile robot SLAM algorithm is often used in the unknown environment. In this paper, the authors proposed two main algorithms of localization. First is the linear Kalman Filter (KF) SLAM, which consists of five phases, such as (a) motionless robot with absolute measurement, (b) moving vehicle with absolute measurement, (c) motionless robot with relative measurement, (d) moving vehicle with relative measurement, and (e) moving vehicle with relative measurement while the robot location is not detected. The second localization algorithm is the SLAM with the Extended Kalman Filter (EKF). Finally, the proposed SLAM algorithms are tested by simulations to be efficient and viable. The simulation results show that the presented SLAM approaches can accurately locate the landmark and mobile robot.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Rodrigo Munguía ◽  
Carlos López-Franco ◽  
Emmanuel Nuño ◽  
Adriana López-Franco

This work presents a method for implementing a visual-based simultaneous localization and mapping (SLAM) system using omnidirectional vision data, with application to autonomous mobile robots. In SLAM, a mobile robot operates in an unknown environment using only on-board sensors to simultaneously build a map of its surroundings, which it uses to track its position. The SLAM is perhaps one of the most fundamental problems to solve in robotics to build mobile robots truly autonomous. The visual sensor used in this work is an omnidirectional vision sensor; this sensor provides a wide field of view which is advantageous in a mobile robot in an autonomous navigation task. Since the visual sensor used in this work is monocular, a method to recover the depth of the features is required. To estimate the unknown depth we propose a novel stochastic triangulation technique. The system proposed in this work can be applied to indoor or cluttered environments for performing visual-based navigation when GPS signal is not available. Experiments with synthetic and real data are presented in order to validate the proposal.


Author(s):  
Olusanya Agunbiade ◽  
Tranos Zuva

The important characteristic that could assist in autonomous navigation is the ability of a mobile robot to concurrently construct a map for an unknown environment and localize itself within the same environment. This computational problem is known as Simultaneous Localization and Mapping (SLAM). In literature, researchers have studied this approach extensively and have proposed a lot of improvement towards it. More so, we are experiencing a steady transition of this technology to industries. However, there are still setbacks limiting the full acceptance of this technology even though the research had been conducted over the last 30 years. Thus, to determine the problems facing SLAM, this paper conducted a review on various foundation and recent SLAM algorithms. Challenges and open issues alongside the research direction for this area were discussed. However, towards addressing the problem discussed, a novel SLAM technique will be proposed.


2012 ◽  
Vol 28 (1) ◽  
pp. 35-57 ◽  
Author(s):  
Fernando A. Auat Cheein ◽  
Fernando M. Lobo Pereira ◽  
Fernando di Sciascio ◽  
Ricardo Carelli

AbstractThis paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.


2013 ◽  
Vol 431 ◽  
pp. 269-274
Author(s):  
Chuang Feng Huai ◽  
Xue Yan Jia

Proposed an uncertain environment path planning method for mobile robot in the presence of moving obstacles. Combining the global planning with the local planning, this dissertation presents a new approach to on-line real-time path planning with respect to the dynamic uncertain environment. With current sampling position, the autoregressive model predicts motion trajectories of moving obstacles. And the predicted positions are treated as instantaneously static. So moving obstacles in the predicted positions can be considered as static in the path planning process. Simulation examples demonstrated the effectiveness, feasibility, real-time capability, high stability and perfect performance of obstacle avoidance.


2021 ◽  
Vol 229 ◽  
pp. 01023
Author(s):  
Rachid Latif ◽  
Kaoutar Dahmane ◽  
Monir Amraoui ◽  
Amine Saddik ◽  
Abdelouahed Elouardi

Localization and mapping are a real problem in robotics which has led the robotics community to propose solutions for this problem... Among the competitive axes of mobile robotics there is the autonomous navigation based on simultaneous localization and mapping (SLAM) algorithms: in order to have the capacity to track the localization and the cartography of robots, that give the machines the power to move in an autonomous environment. In this work we propose an implementation of the bio-inspired SLAM algorithm RatSLAM based on a heterogeneous system type CPU-GPU. The evaluation of the algorithm showed that with C/C++ we have an executing time of 170.611 ms with a processing of 5 frames/s and for the implementation on a heterogeneous system we used CUDA as language with an execution time of 160.43 ms.


2022 ◽  
Author(s):  
Shuhuan Wen ◽  
Zhixin Ji ◽  
Ahmad B. Rad ◽  
Zhengzheng Guo

Abstract The problem of exploration in unknown environments is still a great challenge for autonomous mobile robots due to the lack of a priori knowledge. Active Simultaneous Localization and Mapping (SLAM) is an effective method to realize obstacle avoidance and autonomous navigation. Traditional Active SLAM is usually complex to model and difficult to adapt automatically to new operating areas. This paper presents a novel Active SLAM algorithm based on Deep Reinforcement Learning (DRL). The Relational Proximal Policy Optimization (RPPO) model with deep separable convolution and data batch processing is used to predict the action strategy and generate the action plan through the acquired environment RGB images, so as to realize the autonomous collision free exploration of the environment. Meanwhile, Gmapping is applied to locate and map the environment. Then, based on Transfer Learning, Active SLAM algorithm is applied to complex unknown environments with various dynamic and static obstacles. Finally, we present several experiments to demonstrate the advantages and feasibility of the proposed Active SLAM algorithm.


Author(s):  
Umme Hani ◽  
Lubna Moin

<p>Localization in an autonomous mobile robot allows it to operate autonomously in an unknown and unpredictable environment with the ability to determine its position and heading. Simultaneous localization and mapping (SLAM) are introduced to solve the problem where no prior information about the environment is available either static or dynamic to achieve standard map-based localization. The primary focus of this research is autonomous mobile robot navigation using the extended Kalman filter (EKF)-SLAM environment modeling technique which provides higher accuracy and reliability in mobile robot localization and mapping results. In this paper, EKF-SLAM performance is verified by simulations performed in a static and dynamic environment designed in V-REP i.e., 3D Robot simulation environment. In this work SLAM problem of two-wheeled differential drive robot i.e., Pioneer 3-DX in indoor static and dynamic environment integrated with Laser range finder i.e., Hokuyo URG-04LX- UG01, LIDAR, and Ultrasonic sensors is solved. EKF-SLAM scripts are developed using MATLAB that is linked to V-REP via remote API feature to evaluate EKF-SLAM performance. The reached results confirm the EKF- SLAM is a reliable approach for real-time autonomous navigation for mobile robots in comparison to other techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document