Experimental Measurement and Finite Element Analysis of Screw Spike Fatigue Loads

Author(s):  
Matthew G. Dick ◽  
David S. McConnell ◽  
Hans C. Iwand

Screw spikes, also known as coach screws, are an advanced alternative to common cut spikes for track fastening. Despite their ability to secure tie plates with a clamp load and utilization of high strength steels, they are still susceptible to bending fatigue failure from lateral wheel loads. A novel method of measuring these bending loads on screw spikes was developed and implemented to characterize the load environment of the screw spikes. Results indicated that measured peak bending loads under lateral wheel loads reached as high as 10,000 lbs for individual spikes, while others carried no load whatsoever. A finite element model was developed to determine the tensile stress fields created by the measured bending loads. A good correlation was found between the FEA model predicted point of highest stress and the location of fracture. Through the testing and analysis it was determined that lateral wheel loads are not distributed evenly among the four screw spikes of a single tie plate. Instead, it was found that one spike carried nearly no load while the spike opposite of it carried more load. Using the finite element analysis it was determined that the spike exposed to the higher loading was subjected to tensile stresses above its endurance limit, which would eventually lead to a bending fatigue failure.

1999 ◽  
Author(s):  
Richard B. Englund ◽  
David H. Johnson ◽  
Shannon K. Sweeney

Abstract A finite element analysis (FEA) model of the interaction of a nut and bolt was used to investigate the effects of sliding, friction, and yielding in a bolted connection. The finite element model was developed as a two-dimensional, axisymmetric system, which allowed the study of axial and radial loading and displacements. This model did not permit evaluation of hoop or torsional effects such as tightening or the helical thread form. Results presented in this paper include the distribution of load between consecutive threads, the relative sliding along thread faces, and the stress distribution and regions of yielding in the model. Finally, a comparison to previous, linear analysis work and to published experimental data is made to conclude the paper.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

Axial compressive loads can appear in several situations during the service life of a flexible pipe, due to pressure variations during installation or due to surface vessel heave. The tensile armor withstands well tension loads, but under compression, instability may occur. A Finite Element model is constructed using Abaqus in order to study a flexible pipe compound by external sheath, two layers of tensile armor, a high strength tape and a rigid nucleus. This model is fully tridimensional and takes into account all kinds of nonlinearities involved in this phenomenon, including contacts, gaps, friction, plasticity and large displacements. It also has no symmetry or periodical limitations, thus permitting each individual wire of the tensile armor do displace in any direction. Case studies were performed and their results discussed.


2014 ◽  
Vol 611-612 ◽  
pp. 1753-1762 ◽  
Author(s):  
Elena Silvestre ◽  
Eneko Sáenz de Argandoña ◽  
Lander Galdos ◽  
Joseba Mendiguren

Roll levelling is a forming process used to remove the residual stresses and imperfections of metal strips by means of plastic deformations. During the process the metal fibres are subjected to cyclic tension-compression deformations leading to achieve flat product. The process is especially important to avoid final geometrical errors when coils are cold formed or when thick plates are cut by laser. In the last years, and due to the appearance of high strength materials such as Ultra High Strength Steels, machine design engineers are demanding a reliable tool for the dimensioning of the levelling facilities. In response to this demand, Finite Element Analysis and Analytical methods are becoming an important technique able to lead engineers towards facilities optimization through a deeper understanding of the process. Aiming to this study two different models have been developed to analyze the roll levelling operations: an analytical model and a finite element model. The FE-analysis was done using 2D-modelling assuming plane strain conditions. Differing settings, leveller configuration and materials were investigated. The one-dimensional analytical levelling model is based on classical beam theory to calculate the induced strain distribution through the strip, and hence the evolving elastic/plastic stress distribution. Both models provide a useful guide to process-sensitivities and are able to identify causes of poor leveller performance. The theoretical models have been verified by a levelling experimental prototype with 13 rolls at laboratory.


2013 ◽  
Vol 648 ◽  
pp. 59-62
Author(s):  
Qi Yin Shi ◽  
Yi Tao Ge ◽  
Li Lin Cao ◽  
Zhao Chang Zhang

In this study, based on the test of the high strength materials of steel-encased concrete composite continuous beam, the ultimate flexural capacity of 8 composite continuous beams are analyzed by using the finite element analysis software ABAQUS. Numerical results show that it is a very good agreement for the load-deflection curves which obtained by finite element method (FEM) and those by the test results, and the error control is less than 8.5%. When selecting and utilizing appropriate cyclic constitutive model, element model and failure criterion of high strength steel and high strength concrete, the accuracy of the calculation can be improved better.


2020 ◽  
Vol 984 ◽  
pp. 245-251
Author(s):  
Fang Da Fu ◽  
Lu Liang Wang ◽  
Hai Long Zhao ◽  
Jun Feng Bai ◽  
Xu Dong Zhou ◽  
...  

In this paper, finite element model of reactive powder concrete (RPC) pole was established by using finite element analysis software ABAQUS, and the strength of RPC pole was checked. The results of finite element analysis and theoretical calculation are compared to provide a basis for determining the parameters used in finite element modeling and revising the theoretical calculation formula.


Sign in / Sign up

Export Citation Format

Share Document