Synthesis and Characterization of Solid State Phase Change Material Microcapsules for Thermal Management Applications

Author(s):  
Fangyu Cao ◽  
Jing Ye ◽  
Bao Yang

Polyalcohols such as neopentyl glycol (NPG) undergo solid-state crystal transformations that absorb/release sufficient latent heat. These solid-solid phase change materials (PCM) can be used in practical thermal management applications without concerns about liquid leakage and thermal expansion during phase transition. In this paper, microcapsules of NPG encapsulated in silica shell were successfully synthesized with the use of the emulsion technique. The size of the microcapsules was in the range of 0.2–4 μm, and the thickness of the silica shell was about 30 nm. It was found that the endothermic event of the phase change behavior of these NPG-silica microcapsules was initiated at around 39 °C and the latent heat was about 96.0 J/g. A large supercooling of about 43.3 °C was observed in the pure NPG particles without shell. The supercooling of the NPG microcapsules can be reduced to about 14 °C due to the heterogeneous nucleation sites provided by the silica shell. These NPG microcapsules were added into heat transfer fluid PAO to enhance its heat capacity. The effective heat capacity of the fluids can be increased by 56% by adding 20 wt. % NPG-silica microcapsules.

Author(s):  
Fangyu Cao ◽  
Jing Ye ◽  
Bao Yang

Polyalcohols such as neopentyl glycol (NPG) undergo solid-state crystal transformations that absorb/release significant latent heat. These solid–solid phase change materials (PCM) can be used in practical thermal management applications without concerns about liquid leakage and thermal expansion during phase transitions. In this paper, microcapsules of NPG encapsulated in silica shells were successfully synthesized with the use of emulsion techniques. The size of the microcapsules range from 0.2 to 4 μm, and the thickness of the silica shell is about 30 nm. It was found that the endothermic phase transition of these NPG-silica microcapsules was initiated at around 39 °C and the latent heat was about 96.0 J/g. A large supercooling of about 43.3 °C was observed in the pure NPG particles without shells, while the supercooling of the NPG microcapsules was reduced to about 14 °C due to the heterogeneous nucleation sites provided by the silica shell. These NPG microcapsules were added to the heat transfer fluid PAO to enhance its heat capacity and the effective heat capacity of the fluid was increased by 56% with the addition of 20 wt. % NPG-silica microcapsules.


Author(s):  
Tyler J. E. O’Neil ◽  
Celine S. L. Lim ◽  
Sarvenaz Sobhansarbandi

Abstract Phase change materials (PCMs) are commonly used as energy storage mediums in solar thermal systems. This paper investigates the mixture of PCM doped with nanoparticles to be used as HTFs directly integrated in a U-pipe ETC to be applied in solar thermal collectors. The selected type of PCM-HTF in this study is erythritol (C4H10O4), with high specific heat capacity in liquid form, as well as its unique sub-cooling behavior. In order to overcome the low thermal conductivity of erythritol and further enhance specific heat capacity, a weight concentration of 1% multi-walled carbon nanotubes (MWCNT) is added. Additionally, to insure even distribution of MWCNT and consistent properties of the HTF, triethanolamine (TEA) is proposed to be incorporated as a dispersant. The samples were each tested in a Thermogravimetric Analyzer (TGA) and Differential Scanning Calorimeter (DSC) to analyze their thermal properties. The results from the DSC tests show 12.4% enhancement of specific heat capacity of the proposed HTF mixture as well as nearly 5° C depression of freezing onset temperature. This study allows for the optimization of the operating temperature range of the collector when integrated with these materials, where direct heat gain can be obtained in the collector.


Author(s):  
Thomas B. Freeman ◽  
David Spitzer ◽  
Patrick N. Currier ◽  
Virginie Rollin ◽  
Sandra K.S. Boetcher

Phase-change materials (PCMs) are a useful alternative to more traditional methods of thermal management of various applications. PCMs are materials that absorb large amounts of latent heat and undergo solid-to-liquid phase change at near-constant temperature. The goal of the research is to experimentally investigate the thermal properties of a novel shape-stabilized PCM/HDPE composite extruded filament. The extruded filament can then be used in a 3D printer for custom PCM/HDPE shapes. The PCM used in the study is PureTemp PCM 42, which is an organic-based material that melts around 42 °C. Four PCM/HDPE mixtures were investigated (all percentages by mass): 20/80, 30/70, 40/60, and 50/50. Preliminary findings include differential scanning calorimeter (DSC) measurements of melting temperature and latent heat as well as scanning electron microscope (SEM) pictures of filament composition.


Author(s):  
Thomas B. Freeman ◽  
Kaloki Nabutola ◽  
David Spitzer ◽  
Patrick N. Currier ◽  
Sandra K. S. Boetcher

Phase-change materials (PCMs) are a useful alternative to more traditional methods of thermal management of Li-ion batteries in electric or hybrid-electric vehicles. PCMs are materials which absorb large amounts of latent heat and undergo solid-to-liquid phase change at near-constant temperature. The goal of the research is to experimentally investigate the thermal properties of a novel shape-stabilized PCM/HDPE composite extruded filament. The extruded filament can then be used in a 3D printer for custom PCM/HDPE shapes. The PCM used in the study is PureTemp PCM 42, which is an organic-based material that melts around 42° C. Four PCM/HDPE mixtures were investigated (all percentages by mass): 20/80, 30/70, 40/60, and 50/50. Preliminary findings include differential scanning calorimeter (DSC) measurements of melting temperature and latent heat as well as scanning electron microscope (SEM) pictures of filament composition.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1514
Author(s):  
Sitong Chen ◽  
Shubo Wang ◽  
Xueke Wang ◽  
Weiwei Li ◽  
Baorui Liang ◽  
...  

We added microencapsulated phase change materials (MPCMs) into the homemade antifreeze fluid to take advantage of the latent heat of phase change materials, and explored the possibility of solving the cold start problem of proton exchange membrane fuel cells (PEMFC) with variable specific heat capacity antifreeze. The physical and chemical properties of the MPCMs and their suspensions were tested, and a PEMFC platform for cold start with a thermal management system was established to compare the exothermic performance of MPCS and commercial antifreeze fluid. According to the output voltage, temperature and polarization curves before and after cold start, the MPCMs has a stronger heat transfer capacity than the commercial antifreeze fluid, and the addition of MPCMs can transform the latent heat generated during the phase transition into apparent specific heat capacity, leading to a better solution to the problem of PEMFC cold start.


2011 ◽  
Vol 284-286 ◽  
pp. 1983-1986 ◽  
Author(s):  
Qi Song Shi ◽  
Tai Qi Liu

This study involved the preparation and characterization of polyethylene glycol (PEG)/ polyacrylamide (PAM) composite as solid-solid phase change materials (PCM). In this study, the polyethylene glycol / polyacrylamide composites as solid-solid phase change material was prepared, and the phase change behavior and crystalline morphology of the phase change materials were investigated using differential scanning calorimeter (DSC) , wide-angle X-ray diffraction (WAXD). Results indicated that the composite remained solid when the weight percentage of PEG was less than 60%. The PEG/PAM composite that exhibited solid-solid phase change behavior can be used as a new kind of phase change material for the shortage of thermal energy and temperature control.


Sign in / Sign up

Export Citation Format

Share Document