Evaluation of Existing Frictional Pressure Drop Correlations During Condensation of R410A in Four Horizontal Tubes

Author(s):  
Kunrong Shen ◽  
Zhichuan Sun ◽  
Wei Li ◽  
Xiang Ma ◽  
Yan He ◽  
...  

Abstract Results are presented here from an experimental investigation on tube side condensation characteristics that took place in four tested tubes — 1EHT-1, 1EHT-2, 4LB and a smooth tube. The equivalent outer diameter of the tubes was 9.52 mm and the inner diameter was 8.32 mm. Condensation tests were conducted using refrigerant R410A at a saturation temperature of 318K, over a mass flow range of 150–450 kgm−2s−1, with inlet and outlet vapor quality of 0.8 and 0.2, respectively. Pressure drop data of the four tested tubes were collected to evaluate five identified prediction correlations based on the separated flow model and the homogeneous flow model. For 1EHT-2 and the smooth tube, all the listed correlations manage to present predictions with the Mean Absolute Relative Deviation (MARD) less than 30%, while they underestimate the frictional pressure drop of the 4LB tube with MARD exceeding 40% averagely. Regarding the experimental data, it is found that the Muller-Steinhagen and Heck correlation presents the most accurate and stable prediction for the 4 tested tubes. The listed homogeneous flow correlations can provide acceptable predictions with MARD ranging from 25% to 40% under a few conditions, but their average predictive accuracies are inferior to that of the separated flow correlations. Consequently, the separated flow approach performs better than the homogeneous flow model in the prediction of frictional pressure drop for our experimental data.

Author(s):  
Wei Li ◽  
Kunrong Shen ◽  
Boren Zheng ◽  
Xiang Ma ◽  
S. A. Sherif ◽  
...  

Abstract Results are presented here from an experimental investigation on tube side two-phase characteristics that took place in four tested tubes—the 1EHT-1, 1EHT-2, 4LB, and smooth tubes. The equivalent outer diameter of the tube was 9.52 mm and the inner diameter was 8.32 mm. Condensation tests were conducted using refrigerant R410A at a saturation temperature of 318 K, over a mass flow range of 150–450 kg m−2 s−1, with inlet and outlet vapor qualities of 0.8 and 0.2, respectively. Evaporation tests were performed at a saturation temperature of 279 K, over a mass flow range of 150–380 kg m−2 s−1, with inlet and outlet vapor qualities of 0.2 and 0.8, respectively. Pressure drop data of the four tested tubes were collected to evaluate five identified prediction correlations based on the separated flow model and the homogeneous flow model. The separated flow approaches presented predictions with average MAEs of 24.9% and 16.4% for condensation and evaporation data, respectively, while the average MAEs of the homogeneous flow model were 31.6% and 43.4%, respectively. Almost all the identified correlations underestimated the frictional pressure drop of the 4LB tube with MAEs exceeding 30%. An earlier transition of different flow patterns was expected to occur in the EHT tubes while developing a new diabatic flow pattern map is needed for the 4LB tube. A new correlation was presented based on the two-phase multiplier Φ and the Martinelli parameter Xtt, which exhibited excellent predictive results for the experimental data.


Author(s):  
Zong-bao Gu ◽  
Yu Guo ◽  
Xiang Ma ◽  
Yan He ◽  
Wei Li

Abstract An experimental investigation for evaporation frictional pressure drop in horizontal enhanced tubes with an outer diameter of 12.7 mm was studied using R410A as the working fluid. The experiment was conducted: the mass flux in the range of 100 kg/(m2s) to 200 kg/(m2s), over a vapor quality range of 0.2 to 0.8, an average saturation temperature at 279 K. The inner tubes were the tested tubes, which included a smooth tube, a three-dimensional enhanced tube (a tube enhanced by protrusions and petal arrays background patterns), respectively. The results show that the frictional pressure drop increases with the mass flux increasing. Moreover, the frictional pressure drop of the enhanced tube is 1.6∼2.4 times than that of the smooth tube. This is mainly due to the increase of the flow resistance inside the enhanced tube, which is caused by the increased interfacial turbulence, flow separation and secondary flow. It is also observed that the pressure drop increases with vapor quality increasing. In addition, some existing correlations are used to compare with our experimental data and verify their accuracy. A new modified correlation is proposed to predict the frictional pressure drop of EHT-1 tube.


Author(s):  
I˙smail Teke ◽  
O¨zden Ag˘ra ◽  
Hakan Demir ◽  
S¸. O¨zgu¨r Atayılmaz

In this study, the several well known two-phase viscosity models were used for predicting two-phase flow pressure drop in a smooth tube using Computational Fluid Dynamics (CFD) software at homogenous flow conditions. Pressure drop for two different mass flux values (300 and 650 kg/m2s) for R134a with a saturation temperature of 45 °C in a smooth tube has been modeled according to the homogenous flow model and the results have been compared with the analytical formulas and experimental data from the literature. Three different average viscosity correlations were used. It is seen that the numerical results are in a good agreement with the homogenous flow model and fall in ± 30% band. Also, the results derived from the average viscosity expression are in a good agreement with the results calculated using separated two-phase flow correlations. In addition to this, Artificial Neural Networks (ANNs) were employed for predicting the pressure drop in a horizontal smooth pipe. The trained network gives the best values over the correlations with less than 1% mean relative error.


1961 ◽  
Vol 83 (4) ◽  
pp. 613-618 ◽  
Author(s):  
E. S. Kordyban

The paper presents a construction of a simplified model approximating the actual observed flow pattern. The resulting expressions for frictional pressure drop are found to agree fairly well with the author’s data for steam and water and the data for air and water of other investigators. The similarity with a portion of the Chenoweth-Martin correlation appears to present a logical explanation for the applicability of that correlation to slug flow.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 510
Author(s):  
Yan Huang ◽  
Bifen Shu ◽  
Shengnan Zhou ◽  
Qi Shi

In this paper, two-phase pressure drop data were obtained for boiling in horizontal rectangular microchannels with a hydraulic diameter of 0.55 mm for R-134a over mass velocities from 790 to 1122, heat fluxes from 0 to 31.08 kW/m2 and vapor qualities from 0 to 0.25. The experimental results show that the Chisholm parameter in the separated flow model relies heavily on the vapor quality, especially in the low vapor quality region (from 0 to 0.1), where the two-phase flow pattern is mainly bubbly and slug flow. Then, the measured pressure drop data are compared with those from six separated flow models. Based on the comparison result, the superficial gas flux is introduced in this paper to consider the comprehensive influence of mass velocity and vapor quality on two-phase flow pressure drop, and a new equation for the Chisholm parameter in the separated flow model is proposed as a function of the superficial gas flux . The mean absolute error (MAE ) of the new flow correlation is 16.82%, which is significantly lower than the other correlations. Moreover, the applicability of the new expression has been verified by the experimental data in other literatures.


Author(s):  
Han Wang ◽  
Qincheng Bi ◽  
Linchuan Wang ◽  
Haicai Lv ◽  
Laurence K. H. Leung

An experiment has recently been performed at Xi’an Jiaotong University to study the wall temperature and pressure drop at supercritical pressures with upward flow of water inside a 2×2 rod bundle. A fuel-assembly simulator with four heated rods was installed inside a square channel with rounded corner. The outer diameter of each heated rod is 8 mm with an effective heated length of 600 mm. Experimental parameters covered the pressure of 23–28 MPa, mass flux of 350–1000 kg/m2s and heat flux on the rod surface of 200–1000 kW/m2. According to the experimental data, it was found that the circumferential wall temperature distribution of a heated rod is not uniform. The temperature difference between the maximum and the minimum varies with heat flux and/or mass flux. Heat transfer characteristics of supercritical water in bundle were discussed with respect to various heat fluxes. The effect of heat flux on heat transfer in rod bundles is similar with that in tubes or annuli. In addition, flow resistance reflected in the form of pressure loss has also been studied. Experimental results showed that the total pressure drop increases with bulk enthalpy and mass flux. Four heat transfer correlations developed for supercritical pressures water were compared with the present test data. Predictions of Jackson correlation agrees closely with the experimental data.


2004 ◽  
Vol 126 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Peter M.-Y. Chung ◽  
Masahiro Kawaji ◽  
Akimaro Kawahara ◽  
Yuichi Shibata

An adiabatic experiment was conducted to investigate the effect of channel geometry on gas-liquid two-phase flow characteristics in horizontal microchannels. A water-nitrogen gas mixture was pumped through a 96 μm square microchannel and the resulting flow pattern, void fraction and frictional pressure drop data were compared with those previously reported by the authors for a 100 μm circular microchannel. The pressure drop data were best estimated using a separated-flow model and the void fraction increased non-linearly with volumetric quality, regardless of the channel shape. However, the flow maps exhibited transition boundaries that were shifted depending on the channel shape.


Sign in / Sign up

Export Citation Format

Share Document