An Investigation of Sheet Metal Deformation Behavior During Electro-Hydraulic Forming (EHF)

2013 ◽  
Author(s):  
Aashish Rohatgi ◽  
Elizabeth V. Stephens ◽  
Richard W. Davies ◽  
Mark T. Smith

This work describes recent advances in our understanding of sheet metal behavior during electro-hydraulic forming (EHF) process. Two sets of experiments were performed using AA5182-O Al sheet material. In the first set, 1 mm thick sheet samples were subjected to a single pressure-pulse or two consecutive pressure-pulses with the deformation being carried out under free-forming or inside a conical die. In the second set of experiments employing 2 mm sheet samples, a circular region at the center of the sheet was pre-thinned to 1 mm thickness and the sheet was subjected to a single pressure-pulse under free-forming conditions. The sheet deformation history for both sets of experiments was quantified using a recently developed technique that combines high-speed imaging and the digital image correlation (DIC) techniques. The results from the first set of experiments show that the manner in which the discharge is created can influence the strain-rates and hence, the deformation history experienced by the sheet materials. The results of the multi-pulse experiments demonstrate the applicability of the EHF technique for re-strike operations. The results from the second set of experiments show that the pre-thinned region is analogous to a reduced gauge section with the resulting strain-rate (in the pre-thinned region) exceeding that in the adjacent homogeneous sheet by more than 50%.

2019 ◽  
Vol 47 (3) ◽  
pp. 196-210
Author(s):  
Meghashyam Panyam ◽  
Beshah Ayalew ◽  
Timothy Rhyne ◽  
Steve Cron ◽  
John Adcox

ABSTRACT This article presents a novel experimental technique for measuring in-plane deformations and vibration modes of a rotating nonpneumatic tire subjected to obstacle impacts. The tire was mounted on a modified quarter-car test rig, which was built around one of the drums of a 500-horse power chassis dynamometer at Clemson University's International Center for Automotive Research. A series of experiments were conducted using a high-speed camera to capture the event of the rotating tire coming into contact with a cleat attached to the surface of the drum. The resulting video was processed using a two-dimensional digital image correlation algorithm to obtain in-plane radial and tangential deformation fields of the tire. The dynamic mode decomposition algorithm was implemented on the deformation fields to extract the dominant frequencies that were excited in the tire upon contact with the cleat. It was observed that the deformations and the modal frequencies estimated using this method were within a reasonable range of expected values. In general, the results indicate that the method used in this study can be a useful tool in measuring in-plane deformations of rolling tires without the need for additional sensors and wiring.


Author(s):  
Yang Guo ◽  
Jisheng Chen ◽  
Amr Saleh

Abstract Chip formation in conventional cutting occurs by deformation that is only partially bounded by the cutting tool. The unconstrained free surface is a complication in determining the deformation of chip formation. The constrained cutting employs a constraining tool in the cutting process to confine the otherwise free surface and enable direct control of the chip formation deformation. A study has been made on the deformation mechanics of plane-strain constrained cutting using high speed imaging and digital image correlation (DIC) methods. For different constrained levels (including unconstrained free cutting), material flow of chip formation is directly observed; strain rate and strain in the chip as well as the subsurface region are quantified; cutting forces are measured; and surface finish are examed. The study shows that chip formation in constrained cutting can occur in two different deformation modes, i.e., simple shear and complex extrusion, depending on the constrained level. Constrained cutting in simple shear regime can reduce strain, reduce cutting force and energy, and improve surface finish compared to free cutting, therefore it is more efficient for material removal than free cutting. Constrained cutting in the complex extrusion regime imposes a significant amount of surface / subsurface deformation and consumes a very high cutting energy, and therefore is not suitable for material removal. Furthermore, the mechanics of chip formation in both free cutting and constrained cutting, especially the roles played by the free surface and the constraining tool, are discussed.


2011 ◽  
Vol 70 ◽  
pp. 81-86 ◽  
Author(s):  
Fabrice Pierron ◽  
Rachid Cheriguene ◽  
Pascal Forquin ◽  
Raphael Moulart ◽  
Marco Rossi ◽  
...  

This paper compares the technology and the performances of three ultra high speed cameras for full-field deformation measurements with Digital image correlation or the grid method. The three cameras are based on multiple CCD sensors (Cordin 550-62, with rotating mirror or DRS IMACON 200 with gated intensified CCDs) or dedicated chip (Shimadzu HPV). The advantages and limitations of these cameras are critically reviewed.


2011 ◽  
Vol 189-193 ◽  
pp. 3148-3152 ◽  
Author(s):  
Yu Gui Li ◽  
Fei Fan ◽  
Hai Lian Gui ◽  
Quan Ye

In the shearing process, these were many problems in shearing, the regularity of metal deformation of shearing was analyzed combined with theory of ductile damage and fracture mechanism of high-speed, the rules of factors which could be affected the shearing was analyzed on the velocity and shearing stress state. These theories would improve the shearing section.


2020 ◽  
Vol 57 (4) ◽  
pp. 549-567
Author(s):  
Hamidreza Khatami ◽  
An Deng ◽  
Mark Jaksa

The deformation and stress profiles of passive arching in a coarse sand and two rubberized sand backfills were investigated using a trapdoor apparatus. The trapdoor apparatus was instrumented with high-speed imaging equipment and a series of pressure sensors. The images of the deformation process in the backfills were analysed using the digital image correlation technique. The effect of a local surcharge on the deformation and stress profiles was also examined. It was observed that the rubber inclusions helped reduce the deformation of the backfills. Passive arching moduli and stress variations between the backfills examined are compared.


Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 538 ◽  
Author(s):  
Ahmed Elmahdy ◽  
Patricia Verleysen

The aim of this paper is to assess and compare the performance of both high speed 2D and 3D digital image correlation (DIC) configurations in the characterization of unidirectional carbon fiber reinforced epoxy composites in high strain rate tension in the transverse direction. The criteria for assessment were in terms of strain resolution and measuring the strain localization within the gauge section. Results showed the high-speed 3D DIC technique has lower strain resolution compared to the high-speed 2D DIC technique. In addition, the analysis of the full strain fields indicated that the 3D DIC technique could accurately locate and measure the concentrations of strains within the gauge section of the tested samples.


Author(s):  
Yang Guo ◽  
Jisheng Chen ◽  
Amr Saleh

Abstract Chip formation in conventional cutting occurs by deformation that is only partially bounded by the cutting tool. The unconstrained free surface makes it difficult to determine and to control the deformation of chip formation. The constrained cutting employs a constraining tool in the cutting process to confine the otherwise free surface and enable direct control of the chip formation deformation. The presented work is a study of the deformation mechanics of plane strain constrained cutting using high-speed imaging and digital image correlation (DIC) methods. For different constrained levels (including unconstrained free cutting), the material flow of chip formation is directly observed; the strain rate and strain in the chip as well as the subsurface region are quantified; cutting forces are measured; and surface finish is examined. The study shows that chip formation in constrained cutting can occur in two different deformation modes, i.e., simple shear and complex extrusion, depending on the constrained level. Constrained cutting in the simple shear regime can reduce strain, reduce cutting force and energy, and improve surface finish compared to free cutting; therefore, it is more efficient for material removal than free cutting. Constrained cutting in the extrusion regime imposes a high resistance to the chip flow and causes a significant amount of subsurface deformation, and therefore is not suitable for material removal. Furthermore, the mechanics of chip formation in both free cutting and constrained cutting, especially the roles played by the free surface and the constraining tool, are discussed.


Sign in / Sign up

Export Citation Format

Share Document