Fabrication of Tapered Micro Pillars on Titanium Using Electric Discharge Micromachining

2014 ◽  
Author(s):  
V. K. Jain ◽  
Vishnu Suthar ◽  
Anjali V. Kulkarni

Materials are made harder, tougher, heat resistant and more corrosion resistant which make them difficult-to-machine by traditional machining methods. Titanium and its alloys are in the group of these difficult-to-machine materials, and these alloys have applications in aerospace, power generation, surgical instruments, automobile, chemical plants etc. Ti-6Al-4V is amongst the commonly used titanium alloy, and the current research is focused on its efficient machining. Electro discharge micromachining can be used for producing features in micro range on electrically conductive materials. Straight micro electrodes have been produced using EDMM process. The main objective of the current research is to achieve array of tapered micro pillars on Ti-6Al-4V Work piece material using EDMM process. The effect of process parameters such as gap voltage, discharge current, pulse on-time and duty cycle on the response parameters such as taper angle, material removal rate (MRR) and tool wear rate (TWR) are studied. The experiments are designed using statistical technique. After studying the results of the experiments, the array of micro tapered pillars of different taper angles is produced to see the feasibility of fabrication of tapered pillars on titanium alloy using EDMM process.

Author(s):  
Anshuman Kumar Sahu ◽  
Joji Thomas ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM) is a thermo-electrical process that can be conveniently utilized for generating complex shaped profiles on hard-to-machine conductive materials using metallic tool electrodes. In this work, composite tools made of copper-tungsten-boron carbide (Cu-W-B4C) manufactured by powder metallurgy (PM) route are used during machining of titanium alloy (Ti6Al4V). The effect of four input machining parameters viz. current, pulse-on-time, duty cycle and percentage of tungsten and boron carbide on material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) is studied. A novel meta-heuristic approach such as simple optimization (SOPT) algorithm has been used for single and multi-objective optimization. The pareto-optimal solutions obtained by SOPT have been ranked by VIKOR method to find out the best suitable optimal solution. Analysis of experimental data suggests vital information for controlling the machining parameters to improve the machining performance.


2019 ◽  
Vol 72 (3) ◽  
pp. 291-297
Author(s):  
Jibin T. Philip ◽  
Deepak Kumar ◽  
S.N. Joshi ◽  
Jose Mathew ◽  
Basil Kuriachen

Purpose Electrical discharge machining (EDM) is well-known for its credibility in the processing of advanced materials, which are electrically conductive. The strenuous effort associated with machining of Ti6Al4V (Ti64) using conventional methods, and its low tribological behavior, present an immediate need to develop solutions to monitor and improve the compatible techniques such as EDM. Design/methodology/approach The present work includes following: monitoring the ED process parameters, namely, current (I) and pulse on time (Ton), in controlling the material removal rate and surface roughness (Ra and Sa) for development of tribo-adaptive surfaces; and investigation on the role of oxides pertinent to the tribo-behavior of Ti64 (bare and EDMed) surfaces. Findings The tribological behavior of Ti6Al4V surfaces got remarkably improved through ED machining, which points to the credibility of the process to establish itself as a surface alloying technique. The recast layer (RL, alloyed matrix) acted as a protective coating; stable enough to assist the developed tribo-oxides such as TiO and Ti8O15 in rendering improved sliding performance at load = 50 N and speed = 0.838 ms−1. Originality/value The surface modification through ED machining was experimentally proven to improve the wear behavior of Ti6Al4V surfaces.


2021 ◽  
Vol 19 (5) ◽  
pp. 437-447
Author(s):  
Fahad Kazi ◽  
C.A Waghmare ◽  
M.S Sohani

Electric discharge machining is an advanced machining technique. Spark is initiated between the tool and work piece interface which has a gap between them. Low material removal rate as well as low surface finish is a major concern of this process. Therefore, Powder mixed electric discharge machining is developed. In PMEDM process, powders like silicon, aluminium, chromium, manganese, etc. are circulated along with dielectric fluid in a particular proportion. In this present study, aluminium powder is mixed in the dielectric fluid. The responses such as material removal rate, tool wear rate and surface roughness are measured by considering current, pulse on time and aluminium powder concentration as process parameters. Response surface methodology along with Fuzzy AHP TOPSIS and Grey relational analysis are used for optimization.


Author(s):  
Vikas Gohil ◽  
Yogesh M Puri

Electrical discharge turning is a unique form of electrical discharge machining process, which is being especially developed to generate cylindrical forms and helical profiles on the difficult-to-machine materials at both macro and micro levels. A precise submerged rotating spindle as a work holding system was designed and added to a conventional electrical discharge machine to rotate the workpiece. A conductive preshaped strip of copper as a forming tool is fed (reciprocate) continuously against the rotating workpiece; thus, mirror image of the tool is formed on the circumference of the workpiece. The machining performance of electrical discharge turning process is defined and influenced by its machining parameters, which directly affects the quality of the machined component. This study presents an investigation on the effects of the machining parameters, namely, pulse-on time, peak current, gap voltage, spindle speed and flushing pressure, on the material removal rate (MRR) and surface roughness (Ra) in electrical discharge turning of titanium alloy Ti-6Al-4V. This has been done by means of Taguchi’s design of experiment technique. Analysis of variance as well as regression analysis is performed on the experimental data. The signal-to-noise ratio analysis is employed to find the optimal condition. The experimental results indicate that peak current, gap voltage and pulse-on time are the most significant influencing parameters that contribute more than 90% to material removal rate. In the context of Ra, peak current and pulse-on time come up with more than 82% of contribution. Finally, the obtained predicted optimal results were verified experimentally. It was shown that the error values are all less than 6%, confirming the feasibility and effectiveness of the adopted approach.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
T. Praveena Gopinath ◽  
J. Prasanna ◽  
C. Chandrasekhara Sastry ◽  
Sandeep Patil

Abstract An attempt has been made to study the influence of magnetic field on the micro hole machining of Ti-6Al-4V titanium alloy using electrochemical micromachining (ECMM) process. The presence of magneto hydro dynamics (MHD) is accomplished with the aid of external magnetic field (neodymium magnets) in order to improve the machining accuracy and the performance characteristics of ECMM. Close to ideal solution for magnetic and nonmagnetic field ECMM process, the parameters used are as follows: concentration electrolyte of 15 g/l; peak current of 1.35 A; pulse on time of 400 s; and duty factor of 0.5. An improvement of 11.91–52.43% and 23.51–129.68% in material removal rate (MRR) and 6.03–21.47% and 18.32–33.09% in overcut (OC) is observed in ECMM of titanium alloy under the influence of attraction and repulsion magnetic field, respectively, in correlation with nonmagnetic field ECMM process. A 55.34% surface roughness factor reduction is ascertained in the hole profile in magnetic field-ECMM in correlation with electrochemical machined titanium alloy under nonmagnetic field environment. No machining related stress is induced in the titanium alloy, even though environment of electrochemical machining process has been enhanced with the presence of magnetic field. A slight surge in the compressive residual factor, aids in surge of passivation potential of titanium alloy, resulting in higher resistance to outside environment.


2021 ◽  
Vol 5 (4) ◽  
pp. 125
Author(s):  
Luigi Calabrese ◽  
Martina Azzolini ◽  
Federico Bassi ◽  
Enrico Gallus ◽  
Sara Bocchi ◽  
...  

Nowadays, micro-machining techniques are commonly used in several industrial fields, such as automotive, aerospace and medical. Different technologies are available, and the choice must be made considering many factors, such as the type of machining, the number of lots and the required accuracy specifications in terms of geometrical tolerances and surface finish. Lasers and electric discharge machining (EDM) are widely used to produce micro-components and are similarly unconventional thermal technologies. In general, a laser is particularly appreciated by the industry for the excellent machining speeds and for the possibility to machine essentially any type of materials. EDM, on the other hand, has a poor material removal rate (MRR) but can produce microparts on only electrically conductive workpieces, reaching high geometrical accuracy and realizing steep walls. The most common micro-application for both the technologies is drilling but they can make also milling operations. In this work, a comparison of femto-laser and EDM technologies was made focusing on micro-milling. Two features were selected to make the comparison: micro-channels and micro-pillars. The depth was varied on two levels for both features. As workpiece material, aluminum, stainless steel and titanium alloy were tested. Data regarding the process performance and the geometrical characteristics of the features were analyzed. The results obtained with the two technologies were compared. This work improves the knowledge of the micro-manufacturing processes and can help in the characterization of their capabilities.


2021 ◽  
Vol 1018 ◽  
pp. 91-95
Author(s):  
Tran Thi Hong ◽  
Nguyen Hong Linh ◽  
Bui Thanh Danh ◽  
Le Hong Ky ◽  
Vu Thi Lien ◽  
...  

This paper aims to find the impact of Electric Discharge Machining (EDM) factors on material removal rate (MRR) for 90CrSi alloy steel. Five three-level factors including pulse on time (Ton), pulse off time (Toff), pulse current (IP), server voltage (SV), and diameter of work-piece (dw) are investigated to explore their contribution on MRR by using Taguchi method in twenty-seven experiments based on an orthogonal array L27 (35). The findings realize that MRR is the most affected by the pulse current while the effect of the dw is the smallest. Based on ANOVA analysis, an optimal model of MRR has been developed and verified by comparing with the experiment result. The applicability of this proposed method can be used for further studies in EDM process.


Author(s):  
M. Pradeep Kumar ◽  
N. Pragadish

In this research work, experiments were conducted using Electrical Discharge Machining (EDM) in dry and conventional mode, and the results were compared and analyzed. LM13 Aluminium alloy is used as the workpiece and pure cylindrical copper rod is used as the tool electrode. Since the machining was difficult in dry EDM, some modifications were made in the existing tool design to conduct the experiments in dry EDM. The experiments were designed using Taguchi’s L27 orthogonal array. Discharge current (I), gap voltage (V), pulse on time (TON), pressure (P) and speed (N) were chosen as the various input parameters. Three levels of values were chosen for each input parameter, whereas speed was chosen as the fixed parameter. The variation in the material removal rate (MRR), surface roughness (SR), surface morphology and elemental composition of the machined surface due to variation in the input parameters were analyzed in both dry and conventional mode. Better MRR, and surface roughness were observed in the work piece machined under conventional EDM process. The MRR is observed to be 84% more in the conventional mode when compared with dry EDM. Also, when compared to the dry EDM, about 15.33% better SR values is observed in the conventional EDM process.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 1154 ◽  
Author(s):  
Nishant K. Singh ◽  
Anand Poras ◽  
Subrato Das

The high carbon high chromium die steel is most widely used in various industrial applications. However, effective machining of high carbon-chromium die steel is extremely difficult due to its high hardness and stiffness. In the present work, comparative analysis of Gas Assisted Hybrid EDM (GAHEDM), Rotary EDM (REDM), and Conventional EDM processes have been done with respect to process responses like electrode wear ratio (EWR), material removal rate (MRR), and surface roughness (SR). Experimentation has been done to the study influence of process factors like discharge current, pulse on time, duty cycle, tool rotation and discharge gas pressure on MRR, EWR and SR. Further, from a comparative study, it has been observed that high MRR, low EWR and low SR are obtained in GAHEDM process in comparison of REDM and EDM processes. Analysis of surface morphology reveals that the formation of recast layer and cracks on the surface are fewer in number on work piece machined by GAHEDM process with respect to specimen machined with REDM and EDM processes. The results show that the use of compressed helium gas in GHEDM process has a positive impact on the machining performance. This process may be used for industrial machining operation.  


2016 ◽  
Vol 16 (1) ◽  
pp. 41-49
Author(s):  
V. Krishnaraj

AbstractTitanium alloys are categorized as light weight materials posse greater strength and toughness and are usually known to create major challenges during conventional and non-conventional machining. In general, these alloys are referred as difficult to machine materials. Titanium alloy (Ti-6Al-4V) suffers poor machinability for most cutting processes, especially the generation of micro-holes using traditional machining methods. Electrical Discharge Machining (EDM) is suitable for machining titanium alloys, although selection of machining parameters for higher machining rate and accuracy is a challenging task in machining micro-holes. Discharge current, pulse ON time and Flushing pressure were considered as the major influencing machining parameters and Material Removal Rate (MRR), Tool Wear Rate (TWR) and Hole Taper were considered as the performance criteria. It is observed that machining performances are affected mostly by the peak current and pulse-on time during micro-electro discharge machining of titanium alloy. Mathematical models have been developed using multiple regression analysis, to establish the relationship between various significant process parameters and micro-EDM performance criteria. Also, studies have been made to examine the influence of various process parameters on the quality of the machined micro-hole.


Sign in / Sign up

Export Citation Format

Share Document