Wear Mechanism Analysis of Coated Carbide Tools in High-Speed Milling of Ti-6Al-4V Alloy via Cross-Section Characterization of Worn Cutting Edge

2015 ◽  
Author(s):  
Anhai Li ◽  
Jun Zhao ◽  
Fenghua Lin

Tool wear analysis is essential in high speed machining, especially in the intermittent cutting and milling processes. Analyses of tool wear mechanisms will be beneficial for proposing the suggestions in the tool design process how to enhance the tool material properties to improve the cutting performance and eventually tool life. Wear mechanisms of coated carbide tools in high-speed dry milling of Ti-6A1-4V were assessed by characterization of the cross-section of worn tool cutting edge utilizing scanning electron microscopy, and the element distribution of the worn tool surface was detected by using energy dispersive spectroscopy. Results show that flank wear, chipping and flaking of tool material on the rake face and/or at the nose of tools were the dominant failure modes. And synergistic interaction among coating delamination, erosion wear, adhesion, dissolution-diffusion wear, and thermal-mechanical fatigue wear were the main wear mechanisms analyzed from cross-sectional worn cutting edge. Erosion wear was identified in high speed milling of Titanium alloy and introduced into the wear mechanisms of metal cutting tools. The hydromechanics characteristic of the chips produced in high-speed machining should be responsible for erosion wear of cuttings tools.

Author(s):  
P T Mativenga ◽  
K K B Hon

This paper reviews the contributions that coatings make in enhancing the cutting performance of carbide tools and, in particular, their application in high-speed machining. It examines flank wear and cutting force process trends that are essential for monitoring tool degradation in automated machining factories. The findings of the investigation into cutting forces over the life cycle of different physical vapour deposition (PVD) tool coatings on micrograin carbide in the high-speed machining of tool steel are presented and related to the existing literature. Cutting tests were carried out at a very high spindle speed, 40000 r/min, and for a predetermined cutting time. Variants of the TiAlN coating, i.e. single- and double-layer and composite coating enhanced with WC/C, were evaluated against the uncoated tool and the TiCN, CrN, and TiN coatings. The paper reflects on the performance of advanced PVD coatings and also presents force trends and suggestions for process monitoring.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


Wear ◽  
2015 ◽  
Vol 336-337 ◽  
pp. 29-42 ◽  
Author(s):  
C.Y. Wang ◽  
Y.X. Xie ◽  
Z. Qin ◽  
H.S. Lin ◽  
Y.H. Yuan ◽  
...  

1982 ◽  
Vol 9 (1) ◽  
pp. 60-75 ◽  
Author(s):  
P. A. Dearnley ◽  
E. M. Trent

2015 ◽  
Vol 651-653 ◽  
pp. 1271-1276 ◽  
Author(s):  
Anil Meena ◽  
Mohamed El Mansori

Near-net shape austempered ductile iron (ADI) castings can be considered as a significant economic advantage to the increasing industrial demand for cost and weight efficient materials. However, due to microstructure induced inherent properties, ADI is considered as hard to machine material. The present paper thus investigates the interaction between the microstructural characteristics of ADI and wear mechanisms of PVD-coated carbide tools. The inherent properties of ADI materials are the function of its microstructural characteristics (retained austenite volume content and its carbon content, ferritic cell size, etc.) which can be controlled by the austempering parameters. Experimental studies of dry drilling of different ADI materials with the PVD-coated carbide tools were carried out at a cutting speed of 60 m/min and at a feed of 0.15 mm/rev. The wear mechanisms of the cutting tools were studied by using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis techniques. The obtain results revealed the evolution of crater wear as the main wear mode. In addition, it provides the key findings aims to correlating the machining characteristics of ADI with its microstructure and production conditions.


Sign in / Sign up

Export Citation Format

Share Document