Cutting performance of coated carbide tools in high-speed face milling of AISI H13 hardened steel

2014 ◽  
Vol 71 (9-12) ◽  
pp. 1811-1824 ◽  
Author(s):  
Xiaobin Cui ◽  
Jun Zhao
Wear ◽  
2015 ◽  
Vol 336-337 ◽  
pp. 29-42 ◽  
Author(s):  
C.Y. Wang ◽  
Y.X. Xie ◽  
Z. Qin ◽  
H.S. Lin ◽  
Y.H. Yuan ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 60-63 ◽  
Author(s):  
N.A.H. Jasni ◽  
Mohd Amri Lajis

Hard milling of hardened steel has wide application in mould and die industries. However, milling induced surface finish has received little attention. An experimental investigation is conducted to comprehensively characterize the surface roughness of AISI D2 hardened steel (58-62 HRC) in end milling operation using TiAlN/AlCrN multilayer coated carbide. Surface roughness (Ra) was examined at different cutting speed (v) and radial depth of cut (dr) while the measurement was taken in feed speed, Vf and cutting speed, Vc directions. The experimental results show that the milled surface is anisotropic in nature. Surface roughness values in feed speed direction do not appear to correspond to any definite pattern in relation to cutting speed, while it increases with radial depth-of-cut within the range 0.13-0.24 µm. In cutting speed direction, surface roughness value decreases in the high speed range, while it increases in the high radial depth of cut. Radial depth of cut is the most influencing parameter in surface roughness followed by cutting speed.


2008 ◽  
Vol 392-394 ◽  
pp. 793-797
Author(s):  
Bin Jiang ◽  
Min Li Zheng ◽  
Fang Xu

Based on analyses of cutting heat and temperature in high speed milling, to construct a model of critical cutting speed for high speed milling cutter, find out influencing factor of critical cutting speed, and put forward optimization method of high speed milling cutter based on critical cutting speed. The results indicate that chip conducts a majority of cutting heat along with increase of cutting speed, feed speed and the rake of cutter. Cutting heat which workpiece conducts gradually diminishes when heat source accelerates. When cutting performance of cutter satisfies requirements of high speed milling, the proportion of cutting heat which workpiece conducts approaches its maximum as cutting speed comes to critical cutting speed. To optimize high speed face milling cutter for machining aluminum alloy according to critical cutting speed, the cutter takes on better cutting performance when cutting speed is 2040m/min~2350m/min.


2012 ◽  
Vol 497 ◽  
pp. 94-98
Author(s):  
Yang Qiao ◽  
Xiu Li Fu ◽  
Xue Feng Yang

Powder metallurgy (PM) nickel-based superalloy is regarded as one of the most important aerospace industry materials, which has been widely used in advanced turbo-engines. This work presents an orthogonal design experiments to study the cutting force and cutting temperature variations in the face milling of PM nickel-based superalloy with PVD coated carbide tools. Experimental results show that with the increase of feed rate and depth of cut, there is a growing tendency in cutting force, with the increase of cutting speed, cutting force decreases. Among the cutting parameters, feed rate has the greatest influence on cutting force, especially when cutting speed exceeds 60m/min. With the increase of all the cutting parameters, cutting temperature increases. However the cutting temperature increases slightly as the increasing of feed rate. Tool failure mechanisms in face milling of PM nickel-based superalloy are analyzed. It is shown that the breakage and spalling on the cutting edge are the most dominate failure mechanisms, which dominates the deterioration and final failure of the coated carbide tools.


2020 ◽  
Vol 46 (2) ◽  
pp. 1621-1630 ◽  
Author(s):  
Jianfei Sun ◽  
Shun Huang ◽  
Haitao Ding ◽  
Wuyi Chen

2006 ◽  
Vol 532-533 ◽  
pp. 341-344 ◽  
Author(s):  
Min Li Zheng ◽  
Bin Jiang ◽  
Bin Hu Chen ◽  
Yong Jun Sun

According to the characteristics of high speed face milling process, the models of the stress field for high speed face milling cutter with two sorts of structure are proposed and established. By means of the finite element analysis of the stress field for high speed face milling cutters, the law of influence of the cutter’s structure, the cutter’s subassemblies and the fixing rake of inserts on the stress field of cutter is acquired under the action of high rotate speed. In this foundation, the model reconstruction and the stress field analysis of the cutter are completed, and the model of evaluation for dynamic cutting performance of high speed face milling cutter is established. The results of high speed face milling experiment and frequency spectrum analysis of dynamic cutting force of the cutter indicate that high speed face milling cutter with the fixing rake of zero degree and less subassemblies takes on better dynamic high speed cutting performance.


Sign in / Sign up

Export Citation Format

Share Document