Materials Testing of 3D Printed ABS and PLA Samples to Guide Mechanical Design

Author(s):  
Daniel Farbman ◽  
Chris McCoy

A set of monotonic tensile tests was performed on 3-D printed plastics following ASTM standards. The experiment tested a total of 13 “dog bone” test specimens where the material, infill percentage, infill geometry, load orientation, and strain rate were varied. Strength-to-weight ratios of the various infill geometries were compared. It was found through tensile testing that the specific ultimate tensile strength (MPa/g) decreases as the infill percentage decreases and that hexagonal pattern infill geometry was stronger and stiffer than rectilinear infill. However, in finite element analysis, rectilinear infill showed less deformation than hexagonal infill when the same load was applied. Some design guidelines and future work are presented.

Author(s):  
Giovanni Ricco

The Electrical Isolation Joint is considered a pressure vessel and is usually designed according to ASME VIII Div.1, but the code does not provide specific rules for the component. This paper provides the mechanical design of an Electrical Insulation Joint according to ASME VIII div.1, Appendix 2, “Rules for Bolted Flange.” The scope of this work is to suggest design guidelines to be included in the ASME VIII Div.1 code for Electrical Isolation Joints. The first part of the paper will introduce the geometry of typical electrical isolation joint and will show the distribution of stresses due to internal pressure. The second part of this work will introduce the design of the isolation Joint size of 24” nominal diameter as per ASME VIII div.1 Appendix 2 for items subjected to internal pressure. The third part will compare design results above described with Finite Element Analysis as per ASME VIII div.2 part 5 for design validation.


2021 ◽  
Vol 183 ◽  
pp. 331-336
Author(s):  
Zhang Liming ◽  
He Yulong ◽  
Xu Shanjun ◽  
Zhang Tong ◽  
Guo Junlong ◽  
...  

2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


2010 ◽  
Vol 123-125 ◽  
pp. 399-402
Author(s):  
Fang Chao Xu ◽  
Kazuhiro Kusukawa

Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (BNT) films were deposited on 1 mm thick pure titanium(Ti) substrates by a hydrothermal method. Tensile tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition. In the tensile test, the behavior of BNT film exfoliation was investigated by the replica method. The critical Ti substrate strain inducing BNT film exfoliation was determined by the aid of finite element analysis (FEM). In this study, the results revealed that BNT film exfoliations were caused by the strain of Ti substrate, and the mechanical polish pretreatment improved the adhesion of BNT film to Ti substrate.


1992 ◽  
pp. 183-190
Author(s):  
V. Guarino ◽  
N. F. Hill ◽  
D. A. Hoecker ◽  
T. D. Hordubay ◽  
J. Nasiatka ◽  
...  

Author(s):  
Varatharajan Prasannavenkadesan ◽  
Ponnusamy Pandithevan

Abstract In orthopedic surgery, bone cutting is an indispensable procedure followed by the surgeons to treat the fractured and fragmented bones. Because of the unsuitable parameter values used in the cutting processes, micro crack, fragmentation, and thermal osteonecrosis of bone are observed. Therefore, prediction of suitable cutting force is essential to subtract the bone without any adverse effect. In this study, the Cowper-Symonds model for bovine bone was developed for the first time. Then the developed model was coupled with the finite element analysis to predict the cutting force. To determine the model constants, tensile tests with different strain rates (10−5/s, 10−4/s, 10−3/s, and 1/s) were conducted on the cortical bone specimens. The developed material model was implemented in the bone cutting simulation and validated with the experiments.


2019 ◽  
Vol 48 (4) ◽  
pp. 428003
Author(s):  
张权 ZHANG Quan ◽  
李新 LI Xin ◽  
张艳娜 ZHANG Yan-na ◽  
黄冬 HUANG Dong ◽  
郑小兵 ZHENG Xiao-bing

Sign in / Sign up

Export Citation Format

Share Document