distribution of stresses
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 42)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Author(s):  
O.I. Drachev

Abstract. This research is related to metalworking processing of bodies of revolution with the help of universal lathe machines. The technology includes the application of two types of vibrations to the working tool and the processed surface error measurement. To increase the manufacturing accuracy, the workpiece processed surface error is measured while a workpiece is being rotated; this rotation is performed with the workpiece being rigidly fixed in end supports and at the same time being damped in the sections between these supports. Furthermore, the parameters of vibrations applied to the tool working travel are defined by the workpiece form error and the nature of distribution of stresses that appear when the workpiece is fixed; the nature of the workpiece processed surface form error is extrapolated from the data obtained in the workpiece sections between the supports. Before manufacturing, the workpiece is corrected while being fixed in rigid supports, and the correction itself is performed as the function of magnitude and vector of the workpiece maximum deflection plane. The workpiece may be fixed in rigid supports; steady rests with double rollers may be used as such supports. The workpiece dampening in its sections between end supports may be performed using self-centering steady rests.


2021 ◽  
Vol 937 (4) ◽  
pp. 042086
Author(s):  
B Baymirzaev ◽  
S Sayyidkosimov ◽  
V Morozov ◽  
V V Morozov

Abstract An increase in the stability of the slopes of the sides of a quarry or a ledge when using drainage wells with a camouflage cavity is proved in the article by the polarization-optical method. On the obtained diagrams, the distribution of stresses within the massif clearly shows that in an intact massif, the main concentration of stresses is concentrated in the lower edge of the slope, which contributes to the formation of a plane of displacement of the massif and the development of deformations. The presence of a camouflage cavity leads to a redistribution of stresses with the formation of a stress concentration around the camouflage cavity and a significant decrease in the stress concentration in the lower edge of the slope. Thus, we can say that the use of wells with a camouflage cavity not only drains the rocks along the side, but also unloads the border massif, creating favorable conditions for increasing the stability of the drained slope of the side of the open pit.


2021 ◽  
Vol 43 (s1) ◽  
pp. 521-531
Author(s):  
Zuzanna Fyall

Abstract The paper presents a numerical analysis of the behaviour of egg-shaped glass-reinforced plastic (GRP) panels during the grouting process when using short relining technology. The analysis was carried out for panels subjected to temperature changes. The temperature increase was caused by the heat of hydration of the grout. It was shown that temperature had a significant effect on the stresses occurring in the panels’ walls and also on their deformations. The analysis involved grout being added in a single stage and then in two stages for comparison. The distribution of stresses and deformations were examined for panels with different wall thicknesses that ranged from 12 to 20 mm. Extensive knowledge about the grouting process and the effect of temperature on the behaviour of GRP panels during the assembly stage when using short relining technology could make this non-disruptive technology more competitive with regards to the time of its implementation and its costs when compared to traditional methods.


2021 ◽  
Vol 13 (2) ◽  
pp. 23
Author(s):  
Emilia Andrade Borges ◽  
Eva O. L. Lantsoght ◽  
Sebastián Castellanos-Toro ◽  
Johannio Marulanda Casas

Progressive deterioration is a problem that affects road infrastructure, especially bridges. This requires the development of methods for its adequate detection and revision, one of them being load testing. Within load testing, finite element analysis (FEA) models provide initial information to understand the behavior of a structure and plan accordingly, which represents a fundamental step towards a precise structural evaluation of a bridge. This study focused on the modeling and analysis of the static response of the bridge over the river Lili in Cali, Colombia, a prestressed girder bridge programmed to undergo a diagnostic load test. A linear FEA model was created with information from a manual survey and from other bridges’ plans designed and built under the regulations in force at the time. Due to the absence of plans and design specifications for the bridge, variations were applied to certain model parameters (stiffness of diaphragms and elastomeric bearings), to quantify their effect on the overall behavior of the bridge. The analysis included obtaining the critical position for the design vehicles, the transversal distribution of stresses and determining the influence of the variation parameters in the response of the structure. Results showed that the critical combinations for bending moment and shear were when the loads were the closest to the exterior girders, being these elements the most affected. The variation on the modulus of elasticity for the diaphragms and the stiffness of the elastomeric bearings did not significantly influence the results for bending moment and shear, nor the critical position. Girder distribution factors (GDF) from the model were compared to previous research, finding similarities in shape and value with other FEA models and experimental results. Finally, an instrumentation plan focused on the girders of the bridge was proposed based on the zones where the maximum effects are expected. The findings in this study show how linear FEA models provide initial but relevant information regarding the critical position of design vehicles, the distribution of stresses and the expected values for bending moment and shear under design loads.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022018
Author(s):  
Ioan Both ◽  
Anamaria Feier ◽  
Mihai Brînduşoiu ◽  
Mirela Achim

Abstract The stresses distribution can be easily determined in the cross-section of the elements but in a joint, the distribution of stresses is more complicated. Its complexity is also increased if stiffeners are added to the joint and if the connecting bolts are not positioned in a regular configuration. An aluminium cantilever with a two bolts connection is experimentally tested to determine the real capacity. Stiffeners reduce the stress intensity in the connection, but they are prone to instability problems if they are subjected to compression. In order to determine the real stress development in the stiffeners, the Digital Image Correlation (DIC) technique was used. This technique determines the strains in the loaded parts which then can be equivalated to the stress distribution. The paper presents the stress development in the compressed stiffeners of an aluminium joint considering also improvement solution for increasing the bending capacity by reducing the instability parameters.


Author(s):  
Юрий Владимирович Немировский ◽  
Александр Александрович Тырымов

Предложена структурная модель анизотропной среды для расчета напряженнодеформированного состояния в нетронутых массивах горных пород, которая учитывает ряд горнотехнических и горно-геологических факторов. Результаты аналитического решения позволили объяснить известные из практики натурных наблюдений факты (возможность превосходства горизонтальных напряжений над вертикальными, кусочно-линейный характер напряжений и т.д.), которые находились в противоречии с широко распространенными гипотезами о распределении напряжений в породных массивах. A structural model of an anisotropic medium is proposed for calculating the stressstrain state in intact rock massifs, which takes into account a number of mining and geological factors. The results of the analytical solution allowed us to explain the facts known from the practice of field observations (the possibility of the superiority of horizontal stresses over vertical ones, the piecewise linear nature of stresses, etc.), which were in contradiction with the widespread hypotheses about the distribution of stresses in rock massifs.


2021 ◽  
Vol 15 ◽  
pp. 107-120
Author(s):  
Arno Roland Ngatcha Ndengna ◽  
Joel Renaud Ngouanom Gnidakouong ◽  
Achille Njomoué Pandong ◽  
Ekmon Mbangue

Accurate modeling and prediction of materials properties is of utmost importance to design engineers. In this study, newly developed two-dimensional laminate constitutive equations (LCE) were derived directly from an existing shell model without using a classical correction factor. The resulted LCEs were subsequently used for the first time to analyze a laminated composite tube (LCT) subjected to in plane-loading. This led to additional composite-shell stiffness coefficients which are not currently available in some LCEs. The strains and stresses distribution fields were computed via Matlab. The accuracy and robustness of our analytical method were proven by opposing the as-obtained results of thick and thin LCTs with that of existing theories which use a correction factor. An excellent convergence was observed. Whereas a lower convergence was observed in the case of a laminated shell plate. Results also showed that the thickness ratio χ (2χ=h/R ) considerably influences the mechanical behavior of the LCT. In fact when χ<0.1, the distribution of stresses and strains of the tube were the same for the two opposed theories. When χ>0.1, the distribution of stresses and strains were not the same, hence the contribution of our ABCDE matrix. The new mechanical couplings in our LCE could be well illustrated in a finite element package with visualization tools to observe some intricate deformations which are yet to be seen. Thus the outcome of this work will be of particularly interest to promote advanced scientific and structural engineering applications.


2021 ◽  
Vol 9 (02) ◽  
pp. 90-95
Author(s):  
Prakhar Thakur ◽  
Tarun Kalra ◽  
Manjit Kumar ◽  
Ajay Bansal ◽  
Shefali Malik

Abstract Aim The aim of this study was to evaluate the distribution of stresses in osseointegrated crestal and basal implant in zygomatic region of maxilla and to identify the preferable implant option for better stress distribution. Material and Method The present in vitro study was performed to evaluate stress patterns in bone around basal and crestal dental implant under axial and oblique loading in maxillary zygomatic region with the help of a finite element analysis (FEA). To conduct this study, the following materials were used: computer software ANSYS, basal implants with dimensions 3.7 × 10 mm, and crestal implants with dimensions 3.7 x 10 mm. The amount of load transferred on the bone adjacent to the implant in an axial and transverse load of 100 N at 0 and 45 degrees, respectively, was placed on both types of implants. A three-dimensional (3D) scanner was use to generate 3D simulated model of basal and crestal implants. FEA modelling was generated that replicated the zygomatico maxillary region with special emphasis on bone architecture, bone density, angulation, width, and length of implant prototype. Further, material properties were defined for cortical bone, dense trabecular bone, low density trabecular bone, and titanium on the basis of Young’s modulus of elasticity. Results These values were used by FEA software (ANSYS) to generate a 3D mesh model of bone and implant. Finally, Von Mises (equivalent stress) (MPa) values on the implant were computed using FEA software. The values of maximum Von Mises equivalent stress on the implant collars, body, apex, and bony interface were obtained. Conclusion Maximum stresses were seen at the cortical bone with basal implant placed inside the bone. Stresses that are transferred more to the bone through implant promote bone remineralization. Maximum Von Mises stresses were observed on basal implant body. Thus, these greater stresses have the capacity to simulate mineralization in the cortical bone; this makes basal implant a suitable option for placement inside the cortical bone.


2021 ◽  
Vol 5 (1) ◽  
pp. 22-32
Author(s):  
Konstantin Rudakov

Problematic. At adaptation of a design of discs of rotor of air gas-turbine drives (GTD) it is necessary to conduct, in particular, strength calculations for what to create the computer models corresponding to stated designs (delineations) and operation conditions. If creation of a geometrical part of model does not call special difficulties the algorithm of creation of an is finite-element grid models for carrying out of calculations of performances of the disc stress-strain conditions (SSC) with blades can be modified taking into account development of programs for calculate. Research objective. To offer the algorithms allowing with the set exactitude to calculate performance of the SSC of discs with blades on personal computers, and also to represent outcomes in the form of schedules of type "surface". Realization technique. On an example of the disc of 2nd stage of the compressor of GTD the algorithm of construction of a three-dimensional is finite-element grid of the disc of GTD from the separate blocks which have been "pasted together" in a unified grid has been created. Numerical calculations (a contact problem of thermoelasticity, isotropic materials) are carried out. For preparation of construction of schedules of type "surface" the interface program of transformation of the table of columns in the two-dimensional table is created. The results of research. Are created and explicitly techniques of reaching of research objectives are described. Conclusions. The created techniques allow to carry out on the limited computer powers exact enough control calculations of discs with blades in three-dimensional statement, to conduct visualisation of distribution of stresses and contact forces of a zone of a contact "disc-blades" in the form of schedules of type "surface".


F1000Research ◽  
2021 ◽  
Vol 8 ◽  
pp. 1020
Author(s):  
Omnia Nabil ◽  
Carl Hany Halim ◽  
Ashraf Hassan Mokhtar

Background: The flat occlusal preparation design (FOD) of posterior teeth offers promising results of fracture resistance and stress distribution, but its application in vital teeth is limited as there may be a danger of pulp injury. Although this danger is omitted in endodontically treated teeth, there is no research work assessing the impact of FOD on the fracture resistance and distribution of stresses among these teeth. The aim of this study was to assess the impact of FOD of endodontically treated molars on the fracture resistance and distribution of stresses among a ceramic crown-molar structure when compared to the two planes occlusal preparation design (TOD). Methods: 20 human mandibular molars were endodontically treated and distributed equally to two groups: Group I (TOD) and Group II (FOD). Ceramic CAD/CAM milled lithium disilicate (IPS e.max CAD) crowns were produced for all preparations and adhered using self-adhesive resin cement. Using a universal testing machine, the fracture resistance test was performed. The fractured samples were examined using a stereomicroscope and scanning electron microscope to determine modes of failure. Stress distribution was evaluated by 3D finite element analysis, which was performed on digital models of endodontically treated mandibular molars (one model for each design). Results: Group II recorded statistically non-significant higher fracture resistance mean values (3107.2± 604.9 N) than Group I mean values (2962.6 ±524.27 N) as indicated by Student’s t-test (t=0.55, p= 0.57). Also, Group II resulted in more favorable failure mode as compared to Group I. Both preparation designs yielded low von-Mises stresses within the factor of safety. However, the stress distribution among different layers of the model differed. Conclusions: FOD having comparable fracture strength to TOD and a more favorable fracture behavior can be used for the preparation of endodontically treated molars.


Sign in / Sign up

Export Citation Format

Share Document