Mechanical Design, Additive Manufacturing, and Performance of Equal Volume Metamaterials

Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.

2021 ◽  
Vol 183 ◽  
pp. 331-336
Author(s):  
Zhang Liming ◽  
He Yulong ◽  
Xu Shanjun ◽  
Zhang Tong ◽  
Guo Junlong ◽  
...  

2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


1992 ◽  
pp. 183-190
Author(s):  
V. Guarino ◽  
N. F. Hill ◽  
D. A. Hoecker ◽  
T. D. Hordubay ◽  
J. Nasiatka ◽  
...  

2019 ◽  
Vol 48 (4) ◽  
pp. 428003
Author(s):  
张权 ZHANG Quan ◽  
李新 LI Xin ◽  
张艳娜 ZHANG Yan-na ◽  
黄冬 HUANG Dong ◽  
郑小兵 ZHENG Xiao-bing

Sign in / Sign up

Export Citation Format

Share Document