Data-Driven Prognostics Using Random Forests: Prediction of Tool Wear

Author(s):  
Dazhong Wu ◽  
Connor Jennings ◽  
Janis Terpenny ◽  
Robert Gao ◽  
Soundar Kumara

Manufacturers have faced an increasing need for the development of predictive models that help predict mechanical failures and remaining useful life of a manufacturing system or its system components. Model-based or physics-based prognostics develops mathematical models based on physical laws or probability distributions, while an in-depth physical understanding of system behaviors is required. In practice, however, some of the distributional assumptions do not hold true. To overcome the limitations of model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While earlier work demonstrated the effectiveness of data-driven approaches, most of these methods applied to prognostics and health management (PHM) in manufacturing are based on artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to explore the ability of random forests (RFs) to predict tool wear in milling operations. The performance of ANNs, SVR, and RFs are compared using an experimental dataset. The experimental results have shown that RFs can generate more accurate predictions than ANNs and SVR in this experiment.

Author(s):  
Dazhong Wu ◽  
Connor Jennings ◽  
Janis Terpenny ◽  
Robert X. Gao ◽  
Soundar Kumara

Manufacturers have faced an increasing need for the development of predictive models that predict mechanical failures and the remaining useful life (RUL) of manufacturing systems or components. Classical model-based or physics-based prognostics often require an in-depth physical understanding of the system of interest to develop closed-form mathematical models. However, prior knowledge of system behavior is not always available, especially for complex manufacturing systems and processes. To complement model-based prognostics, data-driven methods have been increasingly applied to machinery prognostics and maintenance management, transforming legacy manufacturing systems into smart manufacturing systems with artificial intelligence. While previous research has demonstrated the effectiveness of data-driven methods, most of these prognostic methods are based on classical machine learning techniques, such as artificial neural networks (ANNs) and support vector regression (SVR). With the rapid advancement in artificial intelligence, various machine learning algorithms have been developed and widely applied in many engineering fields. The objective of this research is to introduce a random forests (RFs)-based prognostic method for tool wear prediction as well as compare the performance of RFs with feed-forward back propagation (FFBP) ANNs and SVR. Specifically, the performance of FFBP ANNs, SVR, and RFs are compared using an experimental data collected from 315 milling tests. Experimental results have shown that RFs can generate more accurate predictions than FFBP ANNs with a single hidden layer and SVR.


2022 ◽  
Author(s):  
Yifan Li ◽  
Yongyong Xiang ◽  
Baisong Pan ◽  
Luojie Shi

Abstract Accurate cutting tool remaining useful life (RUL) prediction is of significance to guarantee the cutting quality and minimize the production cost. Recently, physics-based and data-driven methods have been widely used in the tool RUL prediction. The physics-based approaches may not accurately describe the time-varying wear process due to a lack of knowledge for underlying physics and simplifications involved in physical models, while the data-driven methods may be easily affected by the quantity and quality of data. To overcome the drawbacks of these two approaches, a hybrid prognostics framework considering tool wear state is developed to achieve an accurate prediction. Firstly, the mapping relationship between the sensor signal and tool wear is established by support vector regression (SVR). Then, the tool wear statuses are recognized by support vector machine (SVM) and the results are put into a Bayesian framework as prior information. Thirdly, based on the constructed Bayesian framework, parameters of the tool wear model are updated iteratively by the sliding time window and particle filter algorithm. Finally, the tool wear state space and RUL can be predicted accordingly using the updating tool wear model. The validity of the proposed method is demonstrated by a high-speed machine tool experiment. The results show that the presented approach can effectively reduce the uncertainty of tool wear state estimation and improve the accuracy of RUL prediction.


2020 ◽  
Vol 52 ◽  
pp. 38-43
Author(s):  
Juergen Lenz ◽  
Valerio Pelosi ◽  
Marco Taisch ◽  
Eric MacDonald ◽  
Thorsten Wuest

Author(s):  
Dazhong Wu ◽  
Connor Jennings ◽  
Janis Terpenny ◽  
Soundar Kumara ◽  
Robert X. Gao

The emergence of cloud computing, industrial internet of things (IIoT), and new machine learning techniques have shown the potential to advance prognostics and health management (PHM) in smart manufacturing. While model-based PHM techniques provide insight into the progression of faults in mechanical components, certain assumptions on the underlying physical mechanisms for fault development are required to develop predictive models. In situations where there is a lack of adequate prior knowledge of the underlying physics, data-driven PHM techniques have been increasingly applied in the field of smart manufacturing. One of the limitations of current data-driven methods is that large volumes of training data are required to make accurate predictions. Consequently, computational efficiency remains a primary challenge, especially when large volumes of sensor-generated data need to be processed in real-time applications. The objective of this research is to introduce a cloud-based parallel machine learning algorithm that is capable of training large-scale predictive models more efficiently. The random forests (RFs) algorithm is parallelized using the MapReduce data processing scheme. The MapReduce-based parallel random forests (PRFs) algorithm is implemented on a scalable cloud computing system with varying combinations of processors and memories. The effectiveness of this new method is demonstrated using condition monitoring data collected from milling experiments. By implementing RFs in parallel on the cloud, a significant increase in the processing speed (14.7 times in terms of increase in training time) has been achieved, with a high prediction accuracy of tool wear (eight times in terms of reduction in mean squared error (MSE)).


Sign in / Sign up

Export Citation Format

Share Document