Prediction of High Frequency Sonic Boom Noise Transmission Into Buildings Using a Hybrid Analytical-Ray Tracing Approach

Author(s):  
Joseph M. Corcoran ◽  
Marcel C. Remillieux ◽  
Ricardo A. Burdisso

As part of the effort to renew commercial supersonic flight, a predictive numerical tool to compute sonic boom transmission into buildings is under development. Due to the computational limitations of typical numerical methods used at low frequencies (e.g. Finite Element Method), it is necessary to develop a separate approach for the calculation of acoustic transmission and interior radiation at high frequencies. The high frequency approach can then later be combined with a low frequency method to obtain full frequency vibro-acoustic responses of buildings. An analytical method used for the computation of high frequency acoustic transmission through typical building partitions is presented in this paper. Each partition is taken in isolation and assumed to be infinite in dimension. Using the fact that a sonic boom generated far from the structure will approximate plane wave incidence, efficient analytical solutions for the vibration and acoustic radiation of different types of partitions are developed. This is linked to a commercial ray tracing code to compute the high frequency interior acoustic response and for auralization of transmitted sonic booms. Acoustic and vibration results of this high frequency tool are compared to experimental data for a few example cases demonstrating its efficiency and accuracy.

2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


2018 ◽  
Vol 31 (19) ◽  
pp. 8081-8099 ◽  
Author(s):  
Antonietta Capotondi ◽  
Prashant D. Sardeshmukh ◽  
Lucrezia Ricciardulli

El Niño–Southern Oscillation (ENSO) is commonly viewed as a low-frequency tropical mode of coupled atmosphere–ocean variability energized by stochastic wind forcing. Despite many studies, however, the nature of this broadband stochastic forcing and the relative roles of its high- and low-frequency components in ENSO development remain unclear. In one view, the high-frequency forcing associated with the subseasonal Madden–Julian oscillation (MJO) and westerly wind events (WWEs) excites oceanic Kelvin waves leading to ENSO. An alternative view emphasizes the role of the low-frequency stochastic wind components in directly forcing the low-frequency ENSO modes. These apparently distinct roles of the wind forcing are clarified here using a recently released high-resolution wind dataset for 1990–2015. A spectral analysis shows that although the high-frequency winds do excite high-frequency Kelvin waves, they are much weaker than their interannual counterparts and are a minor contributor to ENSO development. The analysis also suggests that WWEs should be viewed more as short-correlation events with a flat spectrum at low frequencies that can efficiently excite ENSO modes than as strictly high-frequency events that would be highly inefficient in this regard. Interestingly, the low-frequency power of the rapid wind forcing is found to be higher during El Niño than La Niña events, suggesting a role also for state-dependent (i.e., multiplicative) noise forcing in ENSO dynamics.


2018 ◽  
Vol 23 (5) ◽  
pp. 259-269 ◽  
Author(s):  
Da-An Huh ◽  
Yun-Hee Choi ◽  
Myung Sun Ji ◽  
Kyong Whan Moon ◽  
Seok J. Yoon ◽  
...  

Previous studies have reported that exposure to lead and cadmium can damage the inner ear receptor, which perceives high-frequency sounds. However, few studies have used the pure-tone average (PTA), including high-frequency ranges, for the estimation of hearing loss caused by lead and cadmium exposure. We estimated hearing loss using the PTA test, in low-frequency, speech frequency, and high-frequency ranges and compared the differences in the results using 3 PTA calculation methods. We analyzed the data of 2,387 participants, between the ages of 19 and 85 years, that were obtained from the Korea National Health and Nutrition Examination Survey (KNHANES) of 2010–2012. A dose-response relationship between hearing loss and heavy metal exposure was observed in the high-frequency method after adjustment for confounding factors. When using the high-frequency PTA, it was found that doubling of the levels of lead and cadmium in the blood was associated with a 1.88- (95% CI 1.11–3.17) and 1.89-fold (95% CI 1.02–3.50) increase in the OR for hearing loss. In the case of the low-frequency and speech frequency PTA, however, there were no significant relationships between hearing loss and the concentrations of lead and cadmium in the blood. The outcomes of the present study suggest that the estimation of hearing loss caused by environmental exposure to lead and cadmium is affected by the frequencies used in the PTA calculation.


1993 ◽  
Vol 70 (1) ◽  
pp. 64-80 ◽  
Author(s):  
R. Batra ◽  
S. Kuwada ◽  
T. R. Stanford

1. Localization of sounds has traditionally been considered to be performed by a duplex mechanism utilizing interaural temporal differences (ITDs) at low frequencies and interaural intensity differences at higher frequencies. More recently, it has been found that listeners can detect ITDs at high frequencies if the amplitude of the sound varies and an ITD is present in the envelope. Here we report the responses of neurons in the inferior colliculi of unanesthetized rabbits to ITDs of the envelopes of sinusoidally amplitude-modulated (SAM) tones. 2. Neurons were studied extracellularly with glass-coated Pt-Ir or Pt-W microelectrodes. Their sensitivity to ITDs in the envelopes of high-frequency sounds (> or = 2 kHz) was assessed using SAM tones that were presented binaurally. The tones at the two ears had the same carrier frequency but modulation frequencies that differed by 1 Hz. This caused a cyclic variation in the ITD produced by the envelope. In this "binaural SAM" stimulus, the carriers caused no ITD because they were in phase. In addition to the binaural SAM stimulus, pure tones were used to investigate responses to ipsilateral and contralateral stimulation and the nature of the interaction during binaural stimulation. 3. Neurons tended to display one of two kinds of sensitivity to ITDs. Some neurons discharged maximally at the same ITD at all modulation frequencies > 250 Hz (peak-type neurons), whereas others were maximally suppressed at the same ITD (trough-type neurons). 4. At these higher modulation frequencies (> 250 Hz), the characteristic delays that neurons exhibited tended to lie within the range that a rabbit might normally encounter (+/- 300 microseconds). The peak-type neurons favored ipsilateral delays, which correspond to sounds in the contralateral sound field. The trough-type neurons showed no such preference. 5. The preference of peak-type neurons for a particular delay was sharper than that of trough-type neurons and was comparable to that observed in neurons of the inferior colliculus that are sensitive to delays of low-frequency pure tones. 6. At lower modulation frequencies (< 150 Hz) characteristic delays often lay beyond +/- 300 microseconds. 7. Increasing the ipsilateral intensity tended to shift the preferred delay ipsilaterally at lower (< 250 Hz), but not at higher, modulation frequencies. 8. When tested with pure tones, a substantial number of peak-type neurons were found to be excited by contralateral stimulation but inhibited by ipsilateral stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 27 (12) ◽  
pp. 1850114 ◽  
Author(s):  
Yang Huang ◽  
Yi-Ping Dong ◽  
Dao-Jun Liu

We study the photon’s motion around a black hole in the presence of a plasma whose density is a function of the radius coordinate by a renewed ray-tracing algorithm and investigate the influence of the plasma on the shadow of the black hole. The presence of plasma affects not only the size but also the shape of the black hole shadow. Furthermore, the influence of plasma on trajectories of photons depends on the frequency of the photons. For the high-frequency photons, the influence is negligible, on the contrary, the trajectories of low-frequency photons are affected significantly by the plasma. Interestingly, it is also found that the black hole image would take on a multi-ring structure due to the presence of plasma.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 238
Author(s):  
Weiwei Li ◽  
Fajie Wang

This paper presents a precorrected-FFT (pFFT) accelerated singular boundary method (SBM) for acoustic radiation and scattering in the high-frequency regime. The SBM is a boundary-type collocation method, which is truly free of mesh and integration and easy to program. However, due to the expensive CPU time and memory requirement in solving a fully-populated interpolation matrix equation, this method is usually limited to low-frequency acoustic problems. A new pFFT scheme is introduced to overcome this drawback. Since the models with lots of collocation points can be calculated by the new pFFT accelerated SBM (pFFT-SBM), high-frequency acoustic problems can be simulated. The results of numerical examples show that the new pFFT-SBM possesses an obvious advantage for high-frequency acoustic problems.


2016 ◽  
Author(s):  
K. Kessler ◽  
R. A. Seymour ◽  
G. Rippon

AbstractAlthough atypical social behaviour remains a key characterisation of ASD, the presence of sensory and perceptual abnormalities has been given a more central role in recent classification changes. An understanding of the origins of such aberrations could thus prove a fruitful focus for ASD research. Early neurocognitive models of ASD suggested that the study of high frequency activity in the brain as a measure of cortical connectivity might provide the key to understanding the neural correlates of sensory and perceptual deviations in ASD. As our review shows, the findings from subsequent research have been inconsistent, with a lack of agreement about the nature of any high frequency disturbances in ASD brains. Based on the application of new techniques using more sophisticated measures of brain synchronisation, direction of information flow, and invoking the coupling between high and low frequency bands, we propose a framework which could reconcile apparently conflicting findings in this area and would be consistent both with emerging neurocognitive models of autism and with the heterogeneity of the condition.HighlightsSensory and perceptual aberrations are becoming a core feature of the ASD symptom prolife.Brain oscillations and functional connectivity are consistently affected in ASD.Relationships (coupling) between high and low frequencies are also deficient.Novel framework proposes the ASD brain is marked by local dysregulation and reduced top-down connectivityThe ASD brain’s ability to predict stimuli and events in the environment may be affectedThis may underlie perceptual sensitives and cascade into social processing deficits in ASD


Author(s):  
A. S. Hill

Modern radio spectrometers make measurement of polarized intensity as a function of Faraday depth possible. I investigate the effect of depolarization along a model line of sight. I model sightlines with two components informed by observations: a diffuse interstellar medium with a lognormal electron density distribution and a narrow, denser component simulating a spiral arm or H~{\sc ii} region, all with synchrotron-emitting gas mixed in. I then calculate the polarized intensity from 300-1800 MHz and calculate the resulting Faraday depth spectrum. The idealized synthetic observations show far more Faraday complexity than is observed in Global Magneto-Ionic Medium Survey observations. In a model with a very nearby H~{\sc ii} region observed at low frequencies, most of the effects of a ``depolarization wall'' are evident: the H~{\sc ii} region depolarizes background emission and less (but not zero) information from beyond the H~{\sc ii} region reaches the observer. In other cases, the effects are not so clear, as significant amounts of information reach the observer even through significant depolarization, and it is not clear that low-frequency observations sample largely different volumes of the interstellar medium than high-frequency observations. The observed Faraday depth can be randomized such that it does not always have any correlation with the true Faraday depth.


1994 ◽  
Vol 72 (3) ◽  
pp. 1061-1079 ◽  
Author(s):  
Z. M. Fuzessery

1. While hunting, the pallid bat uses passive sound localization at low frequencies to find terrestrial prey, and echolocation for general orientation. It must therefore process two different types of acoustic input at the same time. The pallid bat's echolocation pulse is a downward frequency-modulated (FM) sweep from 60 to 30 kHz. This study examined the response selectivity of single neurons in the pallid bat's central nucleus of the inferior colliculus (ICC) for FM sweeps, comparing the response properties of the high-frequency population, tuned to the biosonar pulse, with the low-frequency population, tuned below the pulse. The working hypothesis was that the high-frequency population would exhibit a response selectivity for downward FM sweeps that was not present in the low-frequency population. 2. Neurons were tested for their selectivity for FM sweep direction, duration, frequency range and bandwidth, and rate of frequency change. The extent to which they responded exclusively to tones, noise, and FM sweeps was also examined. Significant differences in the response properties of neurons in the two populations were found. In the low-frequency population, all neurons responded to tones, but only 50% responded to FM sweeps. Only 23% were selective for sweep direction. In the high-frequency population, all neurons responded to FM sweeps, but 31% did not respond to tones. Over one-half of this population was selective for sweep direction, and of those that were selective, all preferred the downward sweep direction of the biosonar pulse. A large percentage (31%) responded exclusively to downward sweeps, and not to tones or upward sweeps. None of the cells in either population responded to noise, or did so only at very high relative thresholds. 3. Both populations contained neurons that were selective for short stimulus durations that approximated the duration of the biosonar pulse, although the percentage was greater in the high-frequency population (58% vs. 20%). In the high-frequency population, 31% of the neurons tested for duration responded exclusively to both the sweep direction and duration of the biosonar pulse. 4. Downward FM-selective neurons, with one exception, were generally insensitive to the rate of frequency change of the FM sweep, as well as the frequency range and bandwidth of the sweep. They responded similarly to both the full 60- to 30-kHz sweep and to 5-kHz bandwidth portions of the full sweep.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document