Experience With Qualification and Use of Stainless Steels in Subsea Pipelines

Author(s):  
Per Egil Kvaale ◽  
Tore Ha˚brekke ◽  
Gisle Ro̸rvik

Use of stainless steels in subsea oil and gas production systems have been common through the development of remote controlled subsea oil and gas production systems. Stainless steels are mainly selected to minimize the corrosion due to unprocessed oil and gas and thereby simplifying the internal corrosion protection challenges. Different materials and principles have been implemented from cladding of Carbon Manganese steels to the use of solid stainless steels. For cladding Incoloy 825 or Inconel 625 is common, while the solid stainless steels have been duplex, superduplex or 13%Cr steels in pipes and pipe fittings. Experience from service has shown that these materials have limits in their use, and it is reported various cases where the stainless steels have failed. The present paper will deal with a few examples of failures and possible reasons for these failures.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1849 ◽  
Author(s):  
Adriana Velloso Alves de Souza ◽  
Francisca Rosário ◽  
João Cajaiba

Calcium carbonate scale is formed during oil and gas production. Tube-blocking tests (TBTs) are used to define the minimum inhibitory concentration (MIC) in order to prevent scale adhesion in the petroleum production system equipment. However, non-adhered crystals may favor heterogeneous nucleation to other deposits such as calcium naphthenates, causing a more severe scale problem, increasing production losses and treatment costs. The objective of the present work was to develop a new dynamic test methodology to determine the MIC for CaCO3 using a sintered metal filter. Organophosphorus inhibitors were selected for comparison with the conventional dynamic tube-blocking system. The results demonstrated that the use of the filter allowed an MIC of the inhibitors to be obtained considering the precipitation prevention. The inhibitor concentration in the conventional tube-blocking system does not prevent precipitation, acting only on adhesion and crystal growth on the capillary wall. Tests to evaluate the potential of calcium naphthenates formation in a naphthenate flow rig dynamic system demonstrated the influence of heterogeneous nucleation from non-adhered carbonate crystals, potentially aggravating deposition problems in oil and gas production systems.


2020 ◽  
Author(s):  
Meziane Akchiche ◽  
Jean-Louis Beauquin ◽  
Sabine Sochard ◽  
Sylvain Serra ◽  
Jean-Michel Reneaume ◽  
...  

2012 ◽  
Vol 479-481 ◽  
pp. 1129-1132
Author(s):  
Wang Ming Bo

This paper gives an overview of erosion mechanisms in elbows in oil and gas production systems. The nature of the erosion process itself makes it very difficult to develop some definitive methods or models to prevent or predict the erosion in elbows in all conditions. This paper provides a review of the subject which will help petroleum engineers to handle the erosion problems in oil and gas industry. This review is given of different erosion mechanisms connected with sand erosion and the factors that influence them, and then the review goes on to look at particulate erosion in elbows in more details. Conclusions are then drawn based on the above analyses.


Author(s):  
Michelangelo Fabbrizzi ◽  
Paolo Di Sisto ◽  
Roberto Merlo

Subsea oil and gas production systems can be subject to Hydrogen Induced Stress Cracking (“HISC”) depending on the material, cathodic protection and other factors. A failure in this kind of systems can lead to safety issues as well as environmental hazards and high repair costs. The analysis of recent failures has led to the recognition of HISC as a very important issue related to local stress and strain. This has necessitated the extensive use of Finite Elements Methods for the analysis of all system components. Since HISC is a recent issue, there are very few cases of such assessments reported in the literature. This paper is based on the assessment of the susceptibility of subsea piping manifolds of Duplex stainless steel to Hydrogen Induced Stress Cracking, which was conducted during the Skarv project by General Electric Oil & Gas. A variety of cases consisting of different loads and configurations were considered to give a broad assessment using a recently developed code (DNV-RP-F112-October2008). This work has led to the development of a set of procedures and models for the assessment of the entire system which is described in the current paper. The proposed methodology is useful for both design purposes and also for the verification of parts, which, if found to be non-compliant, would require redesign. In general, parts that were determined to be non-compliant using a linear assessment were found to be compliant through non-linear analysis, in fact 3D plastic analysis leads to a redistribution of stress and strain and hence, to lower values. “Cold creep” was not considered since the levels of stress and strain were considered to be low enough to avoid this phenomenon. As a consequence of this experience, a new methodology was developed, which is able to speed up the analysis process and to predict local stresses from only pipe elements. The latter permits the use of a linear assessment for bends, T junctions and weldolet even with misalignment and erosion, avoiding the need to perform 3D analysis. The second part of the paper describes this method.


Author(s):  
Robert J. Conder ◽  
Ryan McPherson ◽  
Ton Kooren ◽  
Allan Parlane

Caisson risers installed through drilling slots are an increasingly common method to add additional riser access to existing oil and gas production platforms. This paper describes the inspection methodology used for two new caisson risers on the Talisman Energy owned Tartan platform in the North Sea. The methodology for qualification of the inspection system for both plain carbon steels and Inconel 625 (UNS N06625) clad carbon steel is described. The offshore performance of the SMUT system is discussed and the time and safety benefits of this system are highlighted.


Sign in / Sign up

Export Citation Format

Share Document