Static Strength of Sleeve Reinforced X-Joints Loaded by Compression Load

Author(s):  
Feng Qi ◽  
Jia-Hua Tan

In this paper a new method to reinforce X joints is presented depended on the connection between pontoon and leg of semi-submersible. As a part of total research, this paper extends numerical study to sleeve reinforced X-joints subjected to compression load through systematic variation of the main geometric parameters. The load transferring mechanisms and failure modes of such joints, with different sleeve size, are investigated and compared with corresponding un-reinforced joints. Within the range of geometric parameters investigated, the sleeve is observed to provide strength enhancement up to 200% for the corresponding un-reinforced joint. Design recommendations are provided for this joint type.

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Gabriele Guerrini ◽  
Christian Salvatori ◽  
Ilaria Senaldi ◽  
Andrea Penna

This paper presents an experimental and numerical study on different retrofit solutions for stone masonry buildings with timber diaphragms in earthquake-prone regions, aiming at enhancing wall-to-diaphragm connections, diaphragms’ stiffness, and masonry properties. The experimental results of incremental dynamic shake-table tests on three full-scale two-story buildings, complemented by material and component characterization tests, are initially summarized. The first building specimen was unstrengthened. The second one was retrofitted at the floor and roof levels with improved wall-to-diaphragm connections and a moderate increase in diaphragm stiffness. Connections were also improved in the third specimen together with a significant enhancement of diaphragm stiffness. The calibration of two numerical models, versus the experimental response of the retrofitted building specimens, is then presented. The models were further modified and reanalyzed to assess the effects of masonry mechanical upgrades, which could be achieved in practice through deep joint repointing or various types of jacketing. These solutions were simulated by applying correction coefficients to the masonry mechanical properties, as suggested by the Italian building code. The effectiveness of the experimentally implemented and numerically simulated interventions are discussed in terms of strength enhancement and failure modes.


2021 ◽  
pp. 136943322110015
Author(s):  
Rana Al-Dujele ◽  
Katherine Ann Cashell

This paper is concerned with the behaviour of concrete-filled tubular flange girders (CFTFGs) under the combination of bending and tensile axial force. CFTFG is a relatively new structural solution comprising a steel beam in which the compression flange plate is replaced with a concrete-filled hollow section to create an efficient and effective load-carrying solution. These members have very high torsional stiffness and lateral torsional buckling strength in comparison with conventional steel I-girders of similar depth, width and steel weight and are there-fore capable of carrying very heavy loads over long spans. Current design codes do not explicitly include guidance for the design of these members, which are asymmetric in nature under the combined effects of tension and bending. The current paper presents a numerical study into the behaviour of CFTFGs under the combined effects of positive bending and axial tension. The study includes different loading combinations and the associated failure modes are identified and discussed. To facilitate this study, a finite element (FE) model is developed using the ABAQUS software which is capable of capturing both the geometric and material nonlinearities of the behaviour. Based on the results of finite element analysis, the moment–axial force interaction relationship is presented and a simplified equation is proposed for the design of CFTFGs under combined bending and tensile axial force.


Author(s):  
Hiroshi Suzuki ◽  
Shinpei Maeda ◽  
Yoshiyuki Komoda

Two-dimensional numerical computations have been performed in order to investigate the development characteristics of flow and thermal field in a flow between parallel plates swept by a visco-elastic fluid. In the present study, the effect of the cavity number in the domain and of Reynolds number was focused on when the geometric parameters were set constant. From the results, it is found that the flow penetration into the cavities effectively causes the heat transfer augmentation in the cavities in any cavity region compared with that of water case. It is also found that the development of thermal field in cases of the present visco-elastic fluid is quicker compared with that of water cases. The present heat transfer augmentation technique using Barus effect of a visco-elastic fluid is effective in the range of low Reynolds number.


2000 ◽  
Author(s):  
Z. C. Xia

Abstract A mathematical analysis of failure developments for tubular hydroforming under combined internal pressure and end feeding is presented in this paper. Under considerations are two distinct failure modes, namely the bursting and the wrinkling. Bursting is an instability phenomenon where the tube can’t sustain any more tensile loading. Splitting usually follows due to extreme deformations in the bursting area. Wrinkling is due to high compression load, which deteriates the qulity of the final product. The deformation theory of plasticity is utilized in this study that takes into account of material anisotropy. The governing equations for the onset of both failure modes are established. The results are presented as Hydroforming Failure Diagram in the End Feed – Internal Pressure space. A parametric study of the failure criteria for a variety of materials and process parameters is performed. It is shown that the material anisotropy plays a significant role. The results provide guidelines for product designers and process engineers for the avoidance of failure during hydroforming. The validity and applicability of current study are also discussed.


Author(s):  
Amirreza Shahani ◽  
Ali Farrahi

The effect of five different stirring times of friction stir spot welding on lap-shear specimens of Al 6061-T6 alloy has been experimentally analyzed. The welding condition with 2 s of stirring shows the optimum mechanical behavior in comparison to the others. The static strength and fatigue behavior of the joint are justified using the microhardness profiles. The static results prove that the increase of stirring time beyond the 2 s case has little effect on improving the static strength. The fatigue results reveal two different failure modes, which are shear fracture at high load levels and transverse crack growth at low load levels. At medium load levels, although the final failure is similar to high load levels, the transverse growth of the crack outside the welding zone, just like low load levels, is also observed.


2017 ◽  
Vol 48 (2) ◽  
pp. 79-86
Author(s):  
Imola Kristóf ◽  
Zsanett Novák ◽  
Dezső Hegyi

The moment resistance of beam-to-column connections is frequently utilised in steel structures. Eurocode 3 suggests the component method to analyse such connections, and it implements the equivalent T-stub method to determine the resistance of the end plate of the beam. The latter method requires tedious and concentrated work. A simplified method is suggested to reduce the number of calculations and enable the designer to focus on construction aspects in the pre-design phase, or in education.The resistance of the T-stub covers three possible failure modes: the yield of the plate, the failure of the of the bolt and simultaneous yield. The yield of the plate and simultaneous yield depend on numerous parameters, and they are verified by multiple equations. The failure of the bolts are more easily checked.In the present paper, requirements for geometric ratios are defined for the widely used steel sections to assure failure of the bolts at a lower level of the load than the yield of the plate. These parameters facilitate the simple calculation of the resistance of the bolts instead of the tedious work needed for the end plate resistance.The paper presents a proper explanation for the design rules and the effect of the geometric parameters on the resistance of the end plate. Geometric parameters are suggested for the widely used hot rolled and typical welded beam sections. All the parameters fulfil the requirements of the equivalent T-stub method of Eurocode 3.


2020 ◽  
Vol 157 ◽  
pp. 01008 ◽  
Author(s):  
Khabibulla Turanov ◽  
Yadgor Ruzmetov

Fastening of cargo on the car. Calculation of load shift, elongation and forces in elastic elements of fasteners. Describe the parameters of the load and the physical and geometric parameters of the load fastening; give the results of the calculation of the longitudinal forces perceived by the elements of the load fastening. The article uses the basic law of dynamics in relative motion for the non-ideal connection known from theoretical mechanics. The results of the calculation of the longitudinal forces perceived by the load fastening elements, which allowed determining the load shifts along the car, elongation and forces in the flexible fastening elements are presented. Example calculation contributes to the practical application of a new method of calculating the elements of fastening on the car in the development of schemes of placement and fastening of goods of arbitrary geometry. The results of calculations revealed that the accepted value of the coefficient of longitudinal dynamics of the car corresponds to the shunting collision of the car on the hump yard in the marshalling yards.


Sign in / Sign up

Export Citation Format

Share Document