Experimental Evaluation of the Dynamic Air Gap of a Large-Volume Semi-Submersible Platform

Author(s):  
Alexandre N. Simos ◽  
Andre´ L. C. Fujarra ◽  
Joa˜o V. Sparano ◽  
Carlos H. Umeda ◽  
Ronaldo R. Rossi

Definition of air gap is an extremely important issue in the design of floating offshore systems such as semi-submersible or TLP platforms. For these systems, any unnecessary increase in the static value of air gap generally demands the payload to be decreased or leads to a larger buoyant hull, which, in any case, has a negative effect on the project economics. Designers face a difficult challenge since there is no well-established methodology for predicting the air gap demand in the early stages of the design. This is a consequence of the inherent complexity involved in the problem of predicting the free-surface elevation around large structures in steep-waves, such as the largest wave expected during a design storm-sea spectrum. Non-linear diffraction models are usually called for a more consistent evaluation of the wave field under the deck and the wave run-up upon the columns, but even second-order analysis is not free of uncertainties. Therefore, air gap evaluation still relies heavily on experimental analysis. This paper presents some towing-tank results performed for the evaluation of the dynamic air gap of a large-volume semi-submersible platform. Regular wave tests were performed for the small-scale model in both restrained and moored configurations and results were confronted with numerical predictions. Air gap response at different locations of the hull was evaluated under three different sea states and results were compared to some semi-analytical models proposed in literature for preliminary air gap estimation. The role of dynamic coupling provided by a taut-leg mooring system on the air gap results is also discussed based on the experimental results.

Author(s):  
Rafael de Andrade Watai ◽  
Fabio Tadao Matsumoto ◽  
Joa˜o Vicente Sparano ◽  
Alexandre Nicolaos Simos ◽  
Marcos Donato A. S. Ferreira

Since July 2008, the Numerical Offshore Tank (TPN) of the University of Sa˜o Paulo and Petrobras have been working on a research project intended to improve knowledge and modeling of advanced hydrodynamics topics, such as the wave run-up phenomenon. Among other activities, wave basin tests were performed with small-scale model of a large volume semi-submersible designed to operate in Campos Basin. These tests evidenced significant run-up effects on its squared-section columns for the steepest waves in several design conditions. In order to evaluate the difficulties involved in modeling the wave run-up phenomenon, simplified tests were also carried out with the model fixed and moored in regular waves with varying steepness. Previous studies using a 2nd order BEM model and a VOF CFD code to predict free-surface elevations below the deck under regular waves were presented in Matsumoto et al. (2010). The studies illustrated considerable differences between the wave elevation results in fixed and moored model setup; however, by that time, the analysis of the moored model by a VOF CFD code was not yet complete. This paper, therefore, presents wave run-up estimations with a moving large volume semi-submersible platform performed with the CFD code ComFLOW, which solves the Navier-Stokes equations employing a local height function to the free surface displacement. The phenomenon is investigated by simulating the flow around the semi-submersible model under the influence of high steepness regular waves on a non-uniform grid. Platform motions, derived from a first order BEM code, are imposed and synchronized with the incoming wave. Aiming at avoiding numerical wave reflections, a damping zone is also applied and positioned downstream the platform model. Predicted results are compared to experimental data, measured by seven vertical wave probes located in different positions below the model deck. Although considerably time-consuming, it will be shown that simulations present very good agreement with the experimental results.


Author(s):  
Xiufeng Liang ◽  
Jianmin Yang ◽  
Longfei Xiao ◽  
Xin Li ◽  
Jun Li

The importance of understanding air gap response and potential deck impact is well-known in the design stage of semi-submersible platform. The highly non-linear nature of wave elevation around large structures in steep waves makes it difficult to accurately predict wave field under the deck and wave run up along the columns. Present engineering tools for the prediction of air gap response generally based on simplified models. Even the models accounting for nonlinear wave diffraction is not free of uncertainties. A method adopted here couples a Navier-Stokes solver, VOF technique capturing violent free surface and DNV/Seasam predicting motions of moored semi-submersible platform. Air gap response at different locations of the hull was evaluated in predetermined irregular wave train. Wave run up was also measured by wave probes near the columns. Load cells were mounted under the deck of the platform to trace potential deck impact. The predetermined irregular wave train was simulated in a numerical wave tank and verified against physical tank results. Analysis of the air gap response, wave run up and impact loads on the semi-submersible platform were conducted.


Author(s):  
Stefano Parmeggiani ◽  
Made Jaya Muliawan ◽  
Zhen Gao ◽  
Torgeir Moan ◽  
Erik Friis-Madsen

The Wave Dragon Wave Energy Converter is ready to be up-scaled to commercial size. The design and feasibility analysis of a 1.5 MW pre-commercial unit to be deployed at the DanWEC test center in Hanstholm, Denmark, is currently ongoing. With regard to the mooring system, the design has to be carried out numerically, through coupled analyses of alternative solutions. The present study deals with the preliminary hydrodynamic characterization of Wave Dragon needed in order to calibrate the numerical model to be used for the mooring design. A hydrodynamic analysis of the small scale model in the frequency domain is performed by the software HydroD, which uses WAMIT as core software. The quadratic damping term, accounting for the viscous effect, is determined through an iterative procedure aimed at matching numerical predictions on the mooring tension, derived through time domain coupled analysis, with experimental results derived from tank tests of a small scale model. Due to the complex geometry of the device, a sensitivity analysis is performed to discuss the influence of the mean position on the quality of the numerical predictions. Good correspondence is achieved between the experimental and numerical model. The numerical model is hence considered reliable for future design applications.


2020 ◽  
Vol 20 (3) ◽  
pp. 333-342
Author(s):  
Le Hai Trung ◽  
Dang Thi Linh ◽  
Tang Xuan Tho ◽  
Nguyen Truong Duy ◽  
Tran Thanh Tung

Seawalls have been erected to protect hundreds of towns and tourism areas stretching along the coast of Vietnam. During storm surges or high tides, wave overtopping and splash-up would often threaten the safety of infrastructures, traffic and residents on the narrow land behind. Therefore, this study investigates these wave-wall interactions via hydraulic small scale model tests at Thuyloi University. Remarkably, the structure models were shaped to have different seaward faces and bullnoses. The wave overtopping discharge and splash run-up height at seawalls with bullnose are significantly smaller than those without bullnose. Furthermore, the magnitude of these decreasing effects is quantitatively estimated.


2016 ◽  
Vol 118 ◽  
pp. 1-11 ◽  
Author(s):  
Lisham Bonakdar ◽  
Hocine Oumeraci ◽  
Amir Etemad-Shahidi

Author(s):  
Fasuo Yan ◽  
Hui Yang ◽  
Pengfei Shen ◽  
Dagang Zhang ◽  
Liping Sun

Design of a floating structure is supposed to be based on the extreme responses experienced by the components of the structure during its lifetime. The airgap response and potential deck impact of ocean structures under sea waves is of considerable interest. Non-linear diffraction models are usually called for a more consistent evaluation of the wave field under the deck and the wave run-up upon the columns, but even second-order analysis is not free of uncertainties. Therefore, air gap evaluation still relies heavily on experimental analysis. This paper presents some deep-tank results performed for the evaluation of the dynamic airgap of a large-volume semisubmersible platform. A series of model tests were carried out for the scale model of a horizontal moored semi in regular and extreme irregular wave conditions. Airgap response combined with run-up close to columns at total 11 locations on the deck was evaluated under oblique wave status. Motions and elevation data are analyzed by statistical treatment. Weibull-tail fitting procedure is realized to determine the extreme response levels.


2013 ◽  
Vol 14 (2) ◽  
Author(s):  
Noor Fachrizal

Biomass such as agriculture waste and urban waste are enormous potency as energy resources instead of enviromental problem. organic waste can be converted into energy in the form of liquid fuel, solid, and syngas by using of pyrolysis technique. Pyrolysis process can yield higher liquid form when the process can be drifted into fast and flash response. It can be solved by using microwave heating method. This research is started from developing an experimentation laboratory apparatus of microwave-assisted pyrolysis of biomass energy conversion system, and conducting preliminary experiments for gaining the proof that this method can be established for driving the process properly and safely. Modifying commercial oven into laboratory apparatus has been done, it works safely, and initial experiments have been carried out, process yields bio-oil and charcoal shortly, several parameters are achieved. Some further experiments are still needed for more detail parameters. Theresults may be used to design small-scale continuous model of productionsystem, which then can be developed into large-scale model that applicable for comercial use.


2021 ◽  
Vol 11 (6) ◽  
pp. 2652
Author(s):  
Jung Han Kim ◽  
Ick-Hyun Kim ◽  
Jin Ho Lee

When a seismic force acts on bridges, the pier can be damaged by the horizontal inertia force of the superstructure. To prevent this failure, criteria for seismic reinforcement details have been developed in many design codes. However, in moderate seismicity regions, many existing bridges were constructed without considering seismic detail because the detailed seismic design code was only applied recently. These existing structures should be retrofitted by evaluating their seismic performance. Even if the seismic design criteria are not applied, it cannot be concluded that the structure does not have adequate seismic performance. In particular, the performance of a lap-spliced reinforcement bar at a construction joint applied by past practices cannot be easily evaluated analytically. Therefore, experimental tests on the bridge piers considering a non-seismic detail of existing structures need to be performed to evaluate the seismic performance. For this reason, six small scale specimens according to existing bridge piers were constructed and seismic performances were evaluated experimentally. The three types of reinforcement detail were adjusted, including a lap-splice for construction joints. Quasi-static loading tests were performed for three types of scale model with two-column piers in both the longitudinal and transverse directions. From the test results, the effect on the failure mechanism of the lap-splice and transverse reinforcement ratio were investigated. The difference in failure characteristics according to the loading direction was investigated by the location of plastic hinges. Finally, the seismic capacity related to the displacement ductility factor and the absorbed energy by hysteresis behavior for each test were obtained and discussed.


Author(s):  
Segen F. Estefen ◽  
Paulo Roberto da Costa ◽  
Eliab Ricarte ◽  
Marcelo M. Pinheiro

Wave energy is a renewable and non-polluting source and its use is being studied in different countries. The paper presents an overview on the harnessing of energy from waves and the activities associated with setting up a plant for extracting energy from waves in Port of Pecem, on the coast of Ceara State, Brazil. The technology employed is based on storing water under pressure in a hyperbaric chamber, from which a controlled jet of water drives a standard turbine. The wave resource at the proposed location is presented in terms of statistics data obtained from previous monitoring. The device components are described and small scale model tested under regular waves representatives of the installation region. Based on the experimental results values of prescribed pressures are identified in order to optimize the power generation.


Sign in / Sign up

Export Citation Format

Share Document